

4/7/2020

SSTS Design

Stillwater School Bus Facility

11530 Hudson Boulevard North, Lake Elmo, MN 55042

PID # 36.029.21.43.0004

Version 1.1

Kloeppner Services & Designs, LLC MPCA LICENSE # 4043

763.843.4114 CONNECT@KSD-MN.COM

SSTS Design Summary Report

On March 26th, 2020 a site evaluation was conducted at 11530 Hudson Blvd N, Lake Elmo, MN 55042 in Washington County to evaluate a location for a new the Subsurface Sewage Treatment System (SSTS) for the Stillwater School Bus Facility. The PID number for the lot is 36.029.21.43.0004. A Type III SSTS with new sewage tanks and two (2) mounds will be used to treat the wastewater from the offices and bathrooms.

Prior to submitting for permit from the local unit government or county, please review and sign all pages which require a signature.

Stillwater School Bus Facility

The Stillwater School Bus Facility is primarily used to store and maintain the buses for Stillwater School District – ISD 834. The facility has a main building with offices for staff and stalls maintenance. The building has bathrooms, breakrooms and utility sinks which are all connected to the sewer line exiting the Southwest corner of the building. No drains from the bus stalls, or other drains in the building, are connected to the sewer.

Estimated Wastewater Source

The staff consists of 12 full-time employees working 8-hour shifts five days a week. The 12 full-time employees are combination of office staff and mechanics. There are 200 bus drivers which have access to bathrooms and a breakroom at the North-end of the building. The bus drivers are only onsite to pick-up and drop-off the buses. Additional visitors (~5 per day) are also added to the total potential usage of sewage for this design.

Bus drivers or office staff will not be present during the weekend days. This will provide an opportunity for the system to "catch up," if the flows exceed expect levels for any unforeseen reason.

Variances & Easements

The new SSTS will not require any variances or infringe upon any easements.

SSTS Configuration

The SSTS will use two (2) septic tanks to reduce the raw influent by 44% before dispersal into two (2) zones for final treatment of wastewater. Dual pumps will divide a maximum, timed-dose flow of 1,008 gallons daily into two (2) 600 ft² Mound Absorption Beds (10' x 60'). The pumps will alternate cycles throughout the day to allow for maximum treatment and absorption.

Design Flow

The Design Flow for the system is 1,440-gallons-per-day (GPD). The Average Daily Flow is calculated as 70% of the Daily Flow - 1,008 GPD.

The Design Flow was calculated using the following estimate flow values determined by MN Chapter 7081 for determining flows for Other Establishments.

7081 Specified Type of Establishment	Unit	# of Units	Design Flow per Unit (See Table I)	Total Avg Daily Flow
Office	employee	12	15.00	180
Office	visitor	5	4.00	20
Public lavatory	user	200	5.00	1000
	Т	otal Flow 708	31 Establishments (gpd)	1200
		9	Safety Factor 20% (gpd)	240
			Total Flow	1440

To provide optimal treatment of the sewage through the Soil Absorption Area, the Maximum Daily Flow will be restricted to 1,008 GPD. Weekly flow totals above 1,008 GPD (-gallons) will require a Septic Maintainer to remove the excess from the Pump Tank to avoid overloading the STA and a back-up of the sewage.

Wastewater Strength

The expected raw influent wastewater is classified as Other Establishment: At-Risk. The reason for the At-Risk classification is due to the potential elevated concentrations of Biological Oxygen Demand (BOD), Total Suspended Solids (TSS) and Fats, Oils and Grease (FOG). This classification of the Wastewater will make the SSTS a Type III and may require an operating permit from Washington County.

The estimated waste strengths to determine system loading rates and septic tankage are:

- 400 mg/L BOD (max. 1,000 mg/L)
- 100 mg/L TSS (max. 550 mg/L)
- 20 mg/L FOG

The estimated concentrations for BOD are based on typical BOD mg/L for a "Office (of 200 – 400 mg/L) from Table: "Estimate of Waste Strengths from Other Establishments." See Appendix.

The level of Fats, Oil & Grease will be very low for this facility. The small breakroom does not prepare food or use a lot of grease.

Septic Tankage

The required septic tankage to settle the raw influent for a 3-day retention time to achieve a 44% reduction of the BOD concentration is 4,320 gallons in two tanks. The designed septic tankage is 4,500 gallons in two tanks to help manage Peak Flows and retain a target of 44% reduction of BOD of the raw influent.

The second tank must have an effluent filter (screen) installed at the outlet. The effluent filter must be rated for a daily flow of 1,500 GPD and must reduce the TSS to < 60 mg/L TSS.

No grease tanks will be used due to the low amount of Fats, Oils & Grease entering the system.

The 2,000-gallon tank for the pumps will also serve as a Surge Tank to manage Peak Flows for the Timed-Dose controlled flow. It is recommended that the tank have a large hatch-door for access to the pumps.

Soil Treatment Area & Absorption Area

The expected effluent concentrations after the Primary Septic Tankage is 223 mg/L BOD, 34 mg/L TSS and < 20 mg/L FOG. To properly size the Soil Treatment Area (STA), the BOD concentration was used to calculate the size of the STA using the maximum organic load (1.88 Pounds BOD/sqft/day). The minimum square feet required, for a controlled daily flow of 1,008 GPD, is 1,103 ft². To account for potential hydraulic overload from excessive flow (> 1,008 GPD) or increased organic load above 400 mg/L BOD, the Absorption Area will be a total of 1,200 ft². This is a safety factor of 109%.

The 1,200 ft² Absorption Area will be split into two (2) Zones. Each Zone will be a Type III Mound of 10' x 60' (600 ft²) with 12 inches of washed mound sand. Eight (8) doses of 80 gallons will distribute 1,008 gallons per day to the entire STA. Each dose will alternate between the two zones equally throughout the day.

The reason a Type III system will be required is due a lack of space available throughout the lot for a Type I due to disturbed soil from parking lots, large berms surrounding the property and retention ponds used for stormwater management.

The location of the new Soil Treatment Area is currently under a parking lot and has a 3,000-gallon holding tank in the footprint. To make sure this system will treat the effluent and not create a ponding effect in the soil below the mounds, all disturbed soil, compacted soil and components (tank & piping) must be excavated. The excavated area must be backfilled with only washed mound sand to a depth below the disturbance and in direct contact with Medium Sand naturally occurring in the soil. This will likely be a large of material.

The Manhole used to the connect the sewer line for the North end of the building and the sewer leaving the building, must be abandoned. The manhole may need to be removed to provide enough room for the three new septic tanks.

Management Plan

The ongoing management of the system is required to properly operate this system. The tanks must be pumped at regular intervals based on the sludge and scum levels of all tanks. See Management Plan for more details.

The management of the system must meet all requirements detailed in the permit from Washington County.

Mitigation Plan

If system is unable to meet standards for the Operating Permit for this design, we recommend hiring Kloeppner Services & Design, LLC (KSD) to assess the cause of the compliance issue. KSD will be able to provide a potential cause and help to provide a solution to meet any perimeters not incompliance for the permit.

Construction Notes

Ordinance 206, 6.1 Building Permit requirements

No construction shall be allowed by any local unit of government until the permit required for the subsurface sewage treatment system has been issued.

Ordinance 206, 9.11 Site Protection

Prior to and during construction or lot improvements, the proposed initial and replacement soil treatment and dispersal areas shall be protected from disturbance, compaction, or other damage by use of stakes and silt fence or snow fence.

MR 7080.2100, Subpart 1. F

Electrical installations must comply with applicable laws and ordinances including the most current codes, rules, and regulations of public authorities having jurisdiction and with part 1315.0200, which incorporates the National Electrical Code.

As-Built Drawing

The Licensed Installer must provide an As-Built of the final location of all components. The attached Site Plan is only for reference and should not be considered as final survey or location of system components.

Soil Erosion & Protection from Freezing

Seed and grass must be established throughout the excavated areas to maintain proper protection from soil erosion and freezing. If paved material is used to cover the pipes or tanks, installation should be used to avoid freezing.

Materials & Specifications

11530 Hudson Blvd N, Lake Elmo – Stillwater School Bus Facility

Tankage – Concrete

- 2,500-Gallon W2500-MR (Wieser Concrete)
- 2,0000-Gallon W2000-MR (Wieser Concrete)
 - Install Commercial Effluent Filter
- 2,0000-Gallon W2000-MR (Wieser Concrete) Surge / Pump Tank
 - Hatch for Pumps
 - o Duplex Pumps

Commercial Effluent Filter

- Rated for 1,500 GPD
- Must reduce TSS below 60 mg/L
- Service Intervals 12 months

Duplex Pumps (ea. Pump)

- GPM 25
- TDH 16
- Installer Choice of Pump Model

Control Panels & Alarms

- High Level Alarm installed above Effluent Filter
- Timed-Dose Control Panel for Alternating Duplex Pumps
 - o High Level Alarm
 - o Timer On/Off
 - o Event Counter

Dispersal Area – Two Mounds

- Soil Treatment Area 1,200 sqft
- Zones 2
- Mound (zone) 10' x 60'
 - End Feed Manifold
 - Laterals 3
 - Length of Laterals 58 feet
 - Rockbed depth 6 inched + 3" to cover pipe
 - Washed Mound Sand 12" sand
 - Backfill 6" mixed soil
 - Topsoil 6" black dirt
- Washed Sand for Backfill of Disturbed Soils 10' x 60' x 6'
 - Additional sand for excavated area above Holding Tanks

*Note: All materials for sewer lines, supply lines, rock, backfill material calculations are only estimates of actual amounts which may be used for construction of this design.

P:\Projects\Projects - 2017\12176010 - Stillwater Bus Facility Evals\C. Design\Drawing Files\12176010 - C4.dwg

IMPROVEMENTS.*

Kloeppner Services & Designs, LLC Lic # 4043	
Approved by: Jesse Kloeppner	Ή
Date - 4/6/20	

 LarSon Engineering, Inc. 3524 Labore Road White Bear Lake, MN 55110 651.481.9120 (f) 651.481.9201 www.larsonengr.com
Cient: STILLWATER AREA PUBLIC SCHOOLS 1875 SOUTH GREELEY STREET STILLWATER, MINNESOTA 55082
Project Title: 2019 STILLWATER BUS FACILITY IMPROVEMENTS STILWATER AREA PUBLIC SCHOOLS STILWATER, MN 55082
I hereby certify that this plan, specifications or report was prepared by me or under my direct supervision and that I am a duly licensed Professional Engineer under the laws of the state of Minnesota. Jabel Markov Ma
Image: Constraint of the system 03.19.19 Addendum #1 Image: Constraint of the system 04.09.19 City Resubmittal Image: Constraint of the system 05.03.19 City Comments Image: Constraint of the system 08.02.19 Proposal Request #2 Image: Constraint of the system 08.16.19 Proposal Request #3 Project #: 12196005 Drawn By: KJA Checked By: GAB Issue Date: 04.30.18 Sheet Title: UTILITY PLAN

Preliminary Evaluation Worksheet

1. Contact Information v 04.02.2019												
Property Owner/Client: ISD	Property Owner/Client: ISD 834 - Stillwater Area Public Schools Date Completed: 3/26/2020											
Site Address: 115	Site Address: 11530 Hudson Blvd N, Lake Elmo, MN 55042 Project ID:											
Legal Description: ONB	Legal Description: ONBlock 1 Lot 1 SubdivisionCd 3198 SubdivisionName FOUR CORNERS											
Parcel ID: 36.0	Parcel ID: 36.029.21.43.0004 TWP: 29 SEC: 36 RNG: 21											
2. Flow and General System Information												
A. Client-Provided Information												
Project Type: New Construction Replacement Expansion Repair 												
Project Use: 🗆 Residential	Project Use: Residential Other Establishment: Office											
Residential use: # Bedro	oms:	Dwelling S	Sq.ft.:	l	Jnfinished So	q. Ft.:						
# A	dults:	# Chi	ldren:		# Teena	agers:						
In-home business ()	′/N):	If yes, des	cribe:									
Water-using devi (check all that ap	Ces: Sewage purr (ces: Colory) Clothes Was	np in basement ub >40 gallons hing Machine	 ✓ Water S □ Iron Filt □ High Eff * Clear wat 	oftener* er* F. Furnace* er source - s	 Sump Pur Self-Clear Other: Should not go 	np* ning Humidifier*						
Additional current or future	uses:											
Anticipated non-domestic w	vaste: No non-d	omestic was	te will be di	scharged to	system.							
The above is complete & accu	rate: <u>Anthony</u>	r (Apr 8, 2020)				SIGN HE						
			Client si	ignature & da	ite							
B. Designer-determined flow	/ Information	Attach addi	itional infor	mation as ne	ecessary.							
Design	Flow: 1440	GPD	Anticip	oated Waste	Type: Other	Est At-Risk						
	BOD: 400	mg/L TSS	100	mg/L (Dil & Grease	20 mg/L						
3. Well Information												
		Woll Dopth	Casing	Confining	стл							
# Description	# Description Mn. ID# (ft.) Depth (ft.) Laver Setback Source											
1 11530 Hudson Blvd	1 11530 Hudson Blvd N ?? >50 >50 50 Owner											
2												
3				1								
4				1	1							
Additional Well Informa	ation:	•	•	:	•							

Site within 200' of noncommunity transient well (Y/N) No Yes, source: Site within a drinking water supply management area (Y/N) No Yes, source: Site in a Well Head Protection inner wellhead management zone (Y/N) No Yes, source: Buried water supply pipes within 50 ft of proposed system (Y/N) No Yes, name: B. Site located in a shoreland district/area? No Yes, name: Classification: Tank Setback: ft. State setting: Classification: Tank Setback: ft. State setting: Floodplain designation/elevation (100 Year): ft Source: Source: D. Property Line Id / Source: Owner Survey County GIS Det Map Other: E. ID distance of relevant setbacks on map: @ Water @ Easements @ Well(s) @ Building(s) @ Property Lines Other: Class 4. Preliminary Soil Profile Information From Web Soil Survey (attach map & description) Map Units: G9-Antigo silt loam Slope Range: 0-2, % List landforms: Flats, terraces Statified sandy and gravely outwash Source: 0, in Parent materials: Loess and/or silty glaciofluvial d	VIAIITY OF MAINSBOR DNSITE SEWAGE FREATMENT PROGRAM		Preliminary Evaluation Workshe	et	m	MINNESOTA POLLUTIC
Site within a drinking water supply management area (Y/N) No Yes, source: Site in a Well Head Protection inner wellhead management zone (Y/N) No Yes, source: Buried water supply pipes within 50 ft of proposed system (Y/N) No B. Site located in a shoreland district/area? No Yes, name: Elevation of ordinary high water level: Classification: Tank Setback: ft. STA Setbk: ft. C. Site located in a floodplain? No Yes, Type(s): Floodplain designation/elevation (10 Year): Floodplain designation/elevation (10 Year): Floodplain designation/elevation (10 Year): Floodplain designation/elevation (10 Year): E. ID distance of relevant setbacks on map: Building(s) @ Property Line & Other: E. ID distance of relevant setbacks on map: Building(s) @ Property Line & Other: 4. Preliminary Soil Profile Information From Web Soil Survey (attach map & description) Map Units: 49-Antigo silt loam Stope Range: 0.2 % List landforms; Flats, terraces Landform position(s); Summit Parent materials; Loess and/or silty glaciofluvial deposits over loamy glaciofluvial deposits over stratified sandy and gravely outwash Depth to Bedrock/Restrictive Feature: 80 in Depth to Watertable: 80 in Map Unit Ratings Septic Tank Absorption Field- At-grade; Very Limited Septic Tank Absorption Field- Mound; Not Limited Septic Tank Absorption Field- Trench; Very Limited 5. Local Government Unit Information Name of LGU; Washington County - Public Health & Environment LGU Contact; Public Health & Environment - (651) 430-6655 LGU-specific setbacks; LGU-specific installation requirements; LGU-specific installation requirements; LGU-specific installation requirements;	Si	te within 200' of noncom	nunity transient well (Y/N)	No	Yes, source:	
Site in a Well Head Protection inner wellhead management zone (Y/N) No Yes, source: Burled water supply pipes within 50 ft of proposed system (Y/N) No B. Site located in a shoreland district/area? No Yes, name: Elevation of ordinary high water level: ft Source: Classification: Tank Setback: ft. STA Setbk: ft. C. Site located in a floodplain? No Yes, Type(s): Floodplain designation/elevation (10 Year): ft Source: Floodplain designation/elevation (10 Year): ft Source: D. Property Line Id / Source: Owner Survey County GIS Plat Map Other: E. ID distance of relevant setbacks on map: Water Easements Well(s) Building(s) Property Lines Other: 4. Preliminary Soil Profile Information From Web Soil Survey (attach map & description) Map Units: 49-Antigo silt loam Slope Range: 0-2 % List landforms; Flats, terraces Landform position(s): Summit Parent materials: Loess and/or silty glaciofluvial deposits over loamy glaciofluvial deposits over stratified sandy and gravely outwash Depth to Bedrock/Restrictive Feature: 80 in Depth to Watertable: 80 in Map Unit: Septic Tank Absorption Field- At-grade: Very Limited Septic Tank Absorption Field- Mound: Not Limited Septic Tank Absorption Field- Trench: Very Limited 5. Local Government Unit Information Name of LGU: Washington County - Public Health & Environment LGU Contact: Public Health & Environment - (651) 430-6655 LGU-specific setbacks: LGU-specific installation requirements: LGU-specific installation requirements:	Site wit	hin a drinking water supp	oly management area (Y/N)	No	Yes, source:	
Buried water supply pipes within 50 ft of proposed system (Y/N) No B. Site located in a shoreland district/area? No Yes, name: Elevation of ordinary high water level: ft Source; Classification: Tank Setback: ft. STA Setbk: Classification: Tank Setback: ft. STA Setbk: ft. Classification: Tank Setback: ft. STA Setbk: ft. Classification: Tank Setback: ft. STA Setbk: ft. Classification: Tank Setback: ft. State Setback: ft. Floodplain designation/elevation (10 Year): ft Source: Source: </td <td>Site in a Well Head</td> <td>Protection inner wellhea</td> <td>ad management zone (Y/N)</td> <td>No</td> <td>Yes, source:</td> <td></td>	Site in a Well Head	Protection inner wellhea	ad management zone (Y/N)	No	Yes, source:	
B. Site located in a shoreland district/area? No Yes, name: Elevation of ordinary high water level: ft Source: Classification: Tank Setback: ft. STA Setbik: Classification: Tank Setback: ft. Sta Setbik: ft. Floodplain designation/elevation (10 Year): ft Source: Ft. Source: Ft. D. Property Line Id / Source: © wrent © survey © County GIS Plat Map Other: County E. ID distance of relevant setbacks on map: © Water © Easements © Well(9) © County County County Other: County County Elevation Andres County: Sett Tank Assore County County Setbit: County Setbit: Tank Absorption Field At grade: Very Limited <td>Buried wate</td> <td>r supply pipes within 50 f</td> <td>t of proposed system (Y/N)</td> <td>No</td> <td>]</td> <td></td>	Buried wate	r supply pipes within 50 f	t of proposed system (Y/N)	No]	
Elevation of ordinary high water level: ft Source: Classification: Tank Setback: ft. STA Setbk: C. Site located in a floodplain? No Yes, Type(s): Floodplain designation/elevation (10 Year): ft Source: Floodplain designation/elevation (10 Year): ft Source: D. Property Line Id / Source: Owner Survey County GIS Plat Map Other: E. ID distance of relevant setbacks on map: Water Easements Well(s) @ Building(s) Property Lines Other: Image: 4. Preliminary Soil Profile Information From Web Soil Survey (attach map & description) Map Units: 49 - Antigo silt loam Stope Range: 0-2 % List landforms: Flats, terraces Ist andforms: Stope Range: 0-2 % List landforms: Summit Statified sandy and gravelly outwash Image: Image: 0 Image: 0 2 % List landforms: Septic Tank Absorption Field- At-grade: Very Limited Image: Image: Image: Image: Image: Image: Image: Image: Image	B. Site loca	ited in a shoreland distri	ct/area?	No	Yes, name:	
Classification: Tank Setback: ft. STA Setbk: ft. C. Site located in a floodplain? No Yes, Type(s): Floodplain designation/elevation (100 Year): ft Source: Source: Floodplain designation/elevation (100 Year): ft Source: Source: Floodplain designation/elevation (100 Year): ft Source: Source: Floodplain designation/elevation (100 Year): ft Source:		Elevation of ord	inary high water level:		ft Source:	
C. Site located in a floodplain? No Yes, Type(s): Floodplain designation/elevation (100 Year): ft Source: Floodplain designation/elevation (100 Year): ft Source: D. Property Line Id / Source: Owner Survey County GIS Plat Map Other: E. ID distance of relevant setbacks on map: Water Easements Well(s) Building(s) Property Lines Other: Other: 4. Preliminary Soil Profile Information From Web Soil Survey (attach map & description) Map Units: 49Antigo silt loam Slope Range: 0-2 % List landforms: Flats, terraces Istal andforms: Survey Slope Range: 0-2 % Landform position(s): Summit Survey Over Vinage Range: 0-2 % Map Units: feats, terraces Survey Survey Very Limited Source: Survey Sur	CL	assification:	Tank Setback:		ft. STA Setbk:	ft.
Floodplain designation/elevation (10 Year): ft Source: Floodplain designation/elevation (100 Year): ft Source: D. Property Line Id / Source: Owner Suvey County GIS Plat Map Other: E. ID distance of relevant setbacks on map: Water Easements Well(s) Building(s) Property Lines Other: Other: 4. Preliminary Soil Profile Information From Web Soil Survey (attach map & description) Map Units: 49-Antigo silt loam Stope Range: 0-2 Map Units: Flats, terraces Landform position(s): Summit Parent materials: Loess and/or silty glaciofluvial deposits over loamy glaciofluvial deposits over stratified sandy and gravelly outwash Depth to Bedrock/Restrictive Feature: 80 in Map Unit Septic Tank Absorption Field- At-grade: Very Limited Map Unit Septic Tank Absorption Field- Mound: Not Limited Septic Tank Absorption Field- Mound: Not Limited Septic Tank Absorption Field- Mound: Not Limited Septic Tank Absorption Field- Mound: Very Limited 5. Local Government Unit Information Information	C. Site loca	ited in a floodplain?		No	Yes, Type(s):	
Floodplain designation/elevation (100 Year): ft Source: D. Property Line Id / Source: Owner Survey County GIS Plat Map Other: E. ID distance of relevant setbacks on map: Water Easements Well(s) @ Building(s) Property Lines OHWL Other: 4. Preliminary Soil Profile Information From Web Soil Survey (attach map & description) Map Units: 49-Antigo silt loam Slope Range: 0-2 List landforms: Flats, terraces Landform position(s): Summit Parent materials: Loess and/or silty glaciofluvial deposits over loamy glaciofluvial deposits over Map Unit Septic Tank Absorption Field- At-grade: Very Limited Map Unit Septic Tank Absorption Field- Mound: Not Limited Septic Tank Absorption Field- Trench: Very Limited Septic Tank Absorption Field- Trench: Edu Septic Tank Absorption Field- Trench: LGU contact: <td></td> <td>Floodplain designation</td> <td>on/elevation (10 Year):</td> <td></td> <td>ft Source:</td> <td></td>		Floodplain designation	on/elevation (10 Year):		ft Source:	
D. Property Line Id / Source: Owner Survey County GIS Plat Map Other: E. ID distance of relevant setbacks on map: Water Easements Well(s) @ Building(s) Property Lines OHWL Other: 4. Preliminary Soil Profile Information From Web Soil Survey (attach map & description) Map Units: 49-Antigo silt loam Slope Range: O-2 List landforms: Flats, terraces Landform position(s): Summit Parent materials: Loess and/or silty glaciofluvial deposits over loamy glaciofluvial deposits over stratified sandy and gravelly outwash Depth to Bedrock/Restrictive Feature: 80 in Depth to Watertable: 80 in Map Unit Septic Tank Absorption Field- At-grade: Very Limited Septic Tank Absorption Field- Trench: Very Limited Septic Tank Absorption Field- Trench: Very Limited Septic Tank Absorption Field- Trench: Very Limited Septic Tank Absorption Field- Trench: Very Limited Septic Tank Absorption Field- Trench: Very Limited Septic Tank Absorption Field- Trench: Very Limited Septic Tank Absorption Field- Trench: Very Limited Sumont LGU Contact:		Floodplain designation	n/elevation (100 Year):		ft Source:	
E. ID distance of relevant setbacks on map:	D. Propert	y Line Id / Source: 🛛 🗆)wner 🗆 Survey 🗵 Cour	nty GIS 🛛 🗆	Plat Map 🛛 Other:	
Building(s) Property Lines OHWL Other: A. Preliminary Soil Profile Information From Web Soil Survey (attach map & description) Map Units: 49-Antigo silt loam Slope Range: 0-2 % List landforms: Flats, terraces Landform position(s): Summit Parent materials: Loess and/or silty glaciofluvial deposits over loamy glaciofluvial deposits over stratified sandy and gravelly outwash Depth to Bedrock/Restrictive Feature: 80 in Depth to Watertable: 80 in Septic Tank Absorption Field- At-grade: Very Limited Septic Tank Absorption Field- Mound: Not Limited Septic Tank Absorption Field- Trench: Very Limited Septic Tank Absorption Field- Trench: Very Limited Septic Tank Absorption Field- Trench: Very Limited LGU Contact: Public Health & Environment LGU Contact: Public Health & Environment LGU-specific setbacks: LGU-specific design requirements: LGU-specific installation requirements:	E. ID distar	nce of relevant setbacks	on map: 🛛 Water 🔤 Ease	ements 🛛	Well(s)	
 4. Preliminary Soil Profile Information From Web Soil Survey (attach map & description) Map Units: 49-Antigo silt loam Slope Range: 0-2 % List landforms: Flats, terraces Landform position(s): Summit Parent materials: Loess and/or silty glaciofluvial deposits over loamy glaciofluvial deposits over stratified sandy and gravelly outwash Depth to Bedrock/Restrictive Feature: 80 in Depth to Watertable: 80 in Septic Tank Absorption Field- At-grade: Very Limited Septic Tank Absorption Field- Mound: Not Limited Septic Tank Absorption Field- Mound: Not Limited Septic Tank Absorption Field- Trench: Very Limited 5. Local Government Unit Information LGU Contact: Public Health & Environment LGU-specific design requirements: LGU-specific installation requirements: 			Building(s)	erty Lines 🛛	OHWL D Other:	
Map Units: 49-Antigo silt loam Slope Range: 0-2 % List landforms: Flats, terraces Landform position(s): Summit Parent materials: Loess and/or silty glaciofluvial deposits over loamy glaciofluvial deposits over stratified sandy and gravelly outwash Depth to Bedrock/Restrictive Feature: 80 in Depth to Watertable: 80 in Septic Tank Absorption Field- At-grade: Very Limited Septic Tank Absorption Field- Mound: Not Limited Map Unit Septic Tank Absorption Field- Trench: Very Limited Septic Tank Absorption Field- Trench: Very Limited 5. Local Government Unit Information Name of LGU: Washington County - Public Health & Environment LGU Contact: Public Health & Environment - (651) 430-6655 LGU-specific setbacks:	4. Preliminary S	oil Profile Information F	rom Web Soil Survey (attach	n map & des	cription)	
List landforms: Flats, terraces Landform position(s): Summit Parent materials: Loess and/or silty glaciofluvial deposits over loamy glaciofluvial deposits over stratified sandy and gravelly outwash Depth to Bedrock/Restrictive Feature: 80 in Depth to Watertable: 80 in Septic Tank Absorption Field- At-grade: Very Limited Septic Tank Absorption Field- Mound: Not Limited Septic Tank Absorption Field- Mound: Not Limited Septic Tank Absorption Field- Trench: Very Limited 5. Local Government Unit Information Name of LGU: Washington County - Public Health & Environment LGU Contact: Public Health & Environment - (651) 430-6655 LGU-specific setbacks: LGU-specific design requirements:		Map Units: 49-Antigo	silt loam		Slope Range:	0-2 %
Landform position(s): Summit Parent materials: Loess and/or silty glaciofluvial deposits over loamy glaciofluvial deposits over stratified sandy and gravelly outwash Depth to Bedrock/Restrictive Feature: 80 in Depth to Watertable: 80 in Septic Tank Absorption Field- At-grade: Very Limited Septic Tank Absorption Field- Mound: Not Limited Septic Tank Absorption Field- Trench: Very Limited 5. Local Government Unit Information Name of LGU: Washington County - Public Health & Environment LGU Contact: Public Health & Environment - (651) 430-6655 LGU-specific setbacks: LGU-specific design requirements: LGU-specific installation requirements:	Lis	t landforms: Flats, terra	aces			
Parent materials: Loess and/or silty glaciofluvial deposits over loamy glaciofluvial deposits over stratified sandy and gravelly outwash Depth to Bedrock/Restrictive Feature: 80 in Depth to Watertable: 80 in Map Unit Ratings Septic Tank Absorption Field- At-grade: Very Limited Septic Tank Absorption Field- Mound: Not Limited Septic Tank Absorption Field- Trench: Very Limited Septic Tank Absorption Field- Trench: Very Limited Septic Tank Absorption Field- Trench: Very Limited Septic Tank Absorption Field- Trench: Very Limited Septic Tank Absorption Field- Trench: Very Limited Septic Tank Absorption Field- Trench: Very Limited Septic Tank Absorption Field- Trench: Very Limited Septic Tank Absorption Field- Trench: Very Limited LGU Contact: Public Health & Environment LGU Contact: Public Health & Environment - (651) 430-6655 LGU-specific design requirements:	Landform	position(s): Summit				
Depth to Bedrock/Restrictive Feature: 80 in Depth to Watertable: 80 in Map Unit Ratings Septic Tank Absorption Field- At-grade: Very Limited Septic Tank Absorption Field- Mound: Not Limited Septic Tank Absorption Field- Trench: Very Limited 5. Local Government Unit Information Name of LGU: Washington County - Public Health & Environment LGU Contact: Public Health & Environment - (651) 430-6655 LGU-specific setbacks:	Parer	t materials: Loess and/ stratified s	or silty glaciofluvial deposits andy and gravelly outwash	over loamy	glaciofluvial depos	its over
Map Unit Ratings Septic Tank Absorption Field- At-grade: Very Limited Septic Tank Absorption Field- Mound: Not Limited Septic Tank Absorption Field- Trench: Very Limited 5. Local Government Unit Information Name of LGU: Washington County - Public Health & Environment LGU Contact: Public Health & Environment - (651) 430-6655 LGU-specific setbacks: LGU-specific design requirements: LGU-specific installation requirements:		Depth to Bedrock/Res	trictive Feature: 80	in Dep	oth to Watertable:	80 in
Map Unit Ratings Septic Tank Absorption Field- Mound: Not Limited Septic Tank Absorption Field- Trench: Very Limited 5. Local Government Unit Information Name of LGU: Washington County - Public Health & Environment LGU Contact: Public Health & Environment - (651) 430-6655 LGU-specific setbacks: LGU-specific design requirements: LGU-specific installation requirements:		Septic Tank Absorptior	Field- At-grade: Very Limi	ted		
Septic Tank Absorption Field- Trench: Very Limited 5. Local Government Unit Information Name of LGU: Washington County - Public Health & Environment LGU Contact: Public Health & Environment - (651) 430-6655 LGU-specific setbacks:	Map Unit Ratings	Septic Tank Absorpti	on Field- Mound: Not Limite	ed		
5. Local Government Unit Information Name of LGU: Washington County - Public Health & Environment LGU Contact: Public Health & Environment - (651) 430-6655 LGU-specific setbacks:	5	Septic Tank Absorptic	on Field- Trench: Very Limi	ted		
Name of LGU: Washington County - Public Health & Environment LGU Contact: Public Health & Environment - (651) 430-6655 LGU-specific setbacks:	5. Local Govern	ment Unit Information				
LGU Contact: Public Health & Environment - (651) 430-6655 LGU-specific setbacks:		Name of LGU:	Washington County - Public	Health & Er	vironment	
LGU-specific setbacks: LGU-specific design requirements: LGU-specific installation requirements:		LGU Contact:	Public Health & Environmen	nt - (651) 430	0-6655	
LGU-specific design requirements: LGU-specific installation requirements:		LGU-specific setbacks:				
LGU-specific installation requirements:	LGU-speci	fic design requirements:				
	LGU-specific in	stallation requirements:				
Notes:		Notes:				

UNIVERSITY OF MINNESOTA	The state
ONSITE	ALLER
SEWAGE	
TREATMENT	
PROGRAM	-LIN-

Field Evaluation Worksheet

1. Project Information				v 04.02.2019					
Property Owner/Client:	ISD 834 - Stil	lwater Area Public	Schools Proje	ect ID:					
Site Address: 11530 Hudson Blvd N, Lake Elmo, MN 55042 Date Completed: 3/26/2020									
2. Utility and Structure Informatio	n								
Utility Locations Identified 🗵 Gopher S	Utility Locations Identified 🗵 Gopher State One Call #								
Locate and Verify (see Site Evaluation	Locate and Verify (<i>see Site Evaluation map</i>)								
3. Site Information									
Vegetation type(s):	Lawn	La	ndscape position: S	houlder					
Percent slope:	% Slope	shape: Linear, Lir	near Slope direction:						
Describe the flooding or run-on	potential of site:	Water will need	to be diverted around r	mounds					
Describe the need for Type III or	r Type IV system:	There is no area	of the site with undistr	rubed soil.					
Note: The placement of	the system was t	he original area for	r a future septic. A par	king lot was installed.					
Elevations and Benchmarks identifie	d on map? (Y/N):	Yes	If yes, describe:	See Site Plan					
Proposed soil treatment area p	protected? (Y/N):	Yes	If yes, describe:	Stakes					
4. General Soils Information	. ,								
Filled, Compacted, Disturbed area	s (Y/N):	Yes							
If yes, describe: The soil under the	parking lot and	the area where the	Holding Tank is located	l has been disturbed.					
Soil obs	ervations were co	onducted in the pro	posed system location	(Y/N): Yes					
A soil obs	servation in the r	nost limiting area o	of the proposed system	(Y/N): Yes					
Number of soil observat	ions: 6	Soil obs	ervation logs attached	(Y/N): Yes					
		Percolation tests	performed & attached	(Y/N): No					
5. Phase I. Reporting Information				`´ <u></u>					
Dep	oth E	levation							
Periodically saturated soil: 24	4 in	99.7 ft	Soil Texture:	Medium sand					
Standing water:	in	ft	Percolation Rate:	min/inch					
Bedrock:	in	ft	Soil Hyd Loading Rate:	1.2 gpd/ft ²					
Benchmark: 100 ft									
Benchmarck Location: SW corner of building (Slab at ground level)									
Differences between soil survey and field evaluation:									
Site evaluation iss	ues / comments:	A parking lot is l	ocated over STA						
Anticipated co	nstruction issues:	Removal of park	ing lot, holding tank an	d sewer manhole					

Soil Observation Log

PROGRAM	TAN				Project ID: v 0-				v 04.02.2019
Client:	ISD	834 - Stil	lwater Area Publi	c Schools	Locati	Location / Address: 11530 Hudson Blvd N, Lake Elmo, MN 55042			
Soil parent r	material(s): (Ch	neck all th	at apply) 🗆 🗆 C	Outwash 🛛 Lacustrine	🛛 Loess 🗆 Till	Alluviu	m 🗆 Bedroc	k 🛛 🗆 Organic I	Matter
Landscape P	osition: (check	cone)	Summit 🗆 Shou	lder 🗆 Back/Side Slope	e 🗆 Foot Slope	□ Toe Slope	Slope shape	Line	ear, Linear
Vegetation:		Lawn	So	il survey map units:	49	Slope %:	0	Elevation:	102.2
Weather Cor	nditions/Time	of Day:	·	Overcast / 8	:35 am		Date	0:	3/26/20
Observatio	on #/Location:		SF	SP1 / See Map Obs				c	Soil Pit
Depth (in)	Texture	Rock	Matrix Color(s)	Mottle Color(s)	Redox Kind(s)	Indicator(s)	ŀ	Structure	
		Frag. %					Shape	Grade	Consistence
0-24	Clay Loam	5%	7.5YR 3/2				Blocky	Moderate	Firm
24-42	Medium Sandy Loam	5%	7.5YR 4/4				Blocky	Moderate	Firm
42-54	Silt Loam	0%	10YR 3/2				Blocky	Moderate	Firm
54-66	Loamy Medium Sand	5%	10YR 4/4				Granular	Weak	Friable
66-72	Medium Sand	5%	7.5YR 5/3				Single grain	Structureless	Loose
72-96	Medium Sand	5%	10YR 5/3	2.5Y 7/8	Concentrations	S1	Single grain	Structureless	Loose
96-108	Medium Sand	10YR 5/3		10YR 5/8	Concentrations	S1	Single grain	Structureless	Loose
Comments	Limiting Layer	r = 72" - 90	6.2' - Natural Soil s	tarts at 42" (above	is fill for hill) - De	pth to LL from	ground level i	s 30" of separatio	on.
I hereby certify that I have completed this work in accordance with all applicable ordinances, rules and laws. Jesse Kloeppner L40 [/]						L4043		3/26/2020	
(Designer/Inspector)				(Signature))		(License #)		(Date)

	Additi	ional	Soil Obse	ervation Log	S	Project ID:		UNIVERSITY OF MINNESOT ONSITE Sewage Treatment Program	
	Client:	ISD 83	4 - Stillwater A	rea Public Schools	Locati	ion / Address:	11530 Hu	dson Blvd N, Lake	e Elmo, MN 55042
Soil parent r	naterial(s): (Ch	neck all th	at apply)	Outwash Lacustrine	🛛 Loess 🗆 Ti	ll 🗆 Alluvi	um 🗆 Bedro	ck 🗆 Organic	Matter
Landscape P	osition: (check	one)	🗵 Summit 🗆 Sł	noulder 🗆 Back/Side Slope	e 🛛 Foot Slope	□ Toe Slope	Slope shape	Line	ar, Linear
Vegetation:		Lawn		Soil survey map units:	49	Slope %:	0.0	Elevation:	101.7
Weather Cor	nditions/Time of	of Day:		Overcast / 8	:40 am		Date:	03	3/26/20
Observatio	n #/Location:			SP2 / Mound		Obse	ervation Type:	S	oil Pit
Depth (in)	Texture	Rock	Matrix Color(s) Mottle Color(s)	Redox Kind(s)	Indicator(s)	-	Structure-	·I
Deptil (iii)	Texture	Frag. %				malcator (3)	Shape	Grade	Consistence
0-18	Silty Clay Loam	5%	7.5YR 3/2				Blocky	Moderate	Firm
18-36	Medium Sandy Loam	5%	7.5YR 4/4				Blocky	Moderate	Firm
36-48	Silt Loam	0%	10YR 3/2				Blocky	Moderate	Firm
48-60	Loamy Medium Sand	5%	10YR 4/4				Granular	Weak	Friable
60-66	Medium Sand	5%	7.5YR 5/3				Single grain	Structureless	Loose
66-90	Medium Sand	5%	10YR 5/3	2.5Y 7/8	Concentrations	S1	Single grain	Structureless	Loose
90-108	Medium Sand	5%	10YR 5/3	10YR 5/8	Concentrations	S1	· Single grain	Structureless	Loose
Comments	Limiting Layer	r = 66" - 96	6.2' - Natural So	il starts at 36" (above i	is fill for hill) - De	pth to LL from	ı ground level i	s 24" of separatio	n.

Textures:		Subsoil Indicator(s) of Saturation:	Consistence:					
c-clay		S1. Depleted matr	ix (value >/=4 and chroma =2)</td <td>Loose-</td> <td>Intact specimen not available</td>	Loose-	Intact specimen not available				
sic-silty clay	,	S2. Distinct gray o	r red redox features	Friable-	Slight force between fingers				
sc-sandy clay	у	S3. 5Y chroma =</td <td>3</td> <td>Firm-</td> <td>Moderate force between fingers</td>	3	Firm-	Moderate force between fingers				
	-	S4. 7.5 YR or redd	er faint redox concentrations or redox depletic	Extremely	Moderate force between hands or slight				
cl-clay loam			·	<u>firm-</u>	foot pressure				
sicl-silty clay	y loam		If yes to one of the above indicators then:	Rigid-	Foot pressure				
scl-sandy cla	ay loam		Topsoil Indicator(s) of Saturation:	Slope Shape:					
si-silt			T1. Wetland Vegetation	Slope shape i	is described in two directions: up and down slope				
sil-silt loam		*Sand Modifiers	T2. Depressional Landscape	(perpendicul	ar to the contour), and across slope (along the				
l-loam		co-coarse	T3. Organic texture or organic modifiers	horizontal co	ntour); e.g. Linear, Convex or LV'.				
sl-sandy loar	n*	m-medium	T4. N 2.5/ 0 color		LIL LIV MINLO				
ls-loamy san	d*	f-fine	T5. Redox features in topsoil		111 111 111				
s-sand*		vf-very fine	T6. Hydric Soil		VI. VC				
Soil Structu	re				NIT NIT W				
Grade:									
Massive-	No observable	e aggregates, or no	orderly arrangement of natural lines of weakn	ess	TICL FILOV MICO				
Weak-	Poorly formed	d, indistinct peds, t	parely observable in place		the the the				
Moderate-	Well formed,	distinct peds, mod	erately durable and evident, but not distinct ir	n undisturbed	(adapted from Wysock).				
Strong-	Durable peds	that are quite evid	ent in un-displaced soil, adhere weakly to one	another,	et al., 2000) C = Concave pathway				
<u>Sciong</u>	withstand dis	placement, and be	come separated when soil is disturbed		Landscape Position:				
Loose-	No peds, sand	ly soil			Summit				
					Back/Side				
Soil Structur	re		Foot Slope						
Shape:					1 oe Slope				
Granular-	The peds are	approximately sphe	erical or polyhedral and are commonly found ir	topsoil. Thes	e are the small, rounded peds that hang onto roots				
Platy-	The peds are	flat and plate like.	They are oriented horizontally and are usually	overlapping.	Platy structure is commonly found in forested areas				
Blocky-	- The peds are block-like or polyhedral, and are bounded by flat or slightly rounded surface that are casting of the faces of surrounding peds.								
Prismatic-	Flat or slightl	y rounded vertical	faces bound the individual peds. Peds are dist	inctly longer v	vertically, and faces are typically cast or molds of				
Single Grain	The structure	found in a sandy s	oil. The individual particles are not held togeth	ner.					

Soil Observation Log

PROGRAM						-	Project ID:		v 04.02.2019			
Client:	ISD	834 - Stil	lwater Ar	ea Public	: Schools	Location / Address: 11530 Hudson Blvd N, Lake Elmo, MN 550						
Soil parent material(s): (Check all that apply)						☑ Loess □ Till	□ Alluviur	m 🗆 Bedroo	k □ Organic M	Matter		
Landscape P	osition: (check	(one)	Summit	□ Should	ler 🗆 Back/Side Slope	. □ Foot Slope	□ Toe Slope	Slope shape	Slope shape Linear, Linear			
Vegetation:		Lawn		Soi	l survey map units:	49	Slope %:	0.0	0.0 Elevation (ft): 103.5			
Weather Cor	nditions/Time	of Day:	I		Overcast / 9:	:30 am	1	Date:	03	3/26/20		
Observatio	n #/Location:			SP3	3 / See Map		Obse	ervation Type:	9	Soil Pit		
Donth (in)	Toyturo	Rock	Matrix (Color(c)	Nottle Color(s)	Reday Kind(s)	Indicator(s)	I	Structure	I		
Depth (III)	Texture	Frag. %	Matrix C	20101 (S)	Mottle Color(s)	Redox Killd(S)	indicator (S)	Shape	Grade	Consistence		
0-33	Medium	15%	10YR	3/3		Disturbed		Blocky	Moderate	Firm		
0-33	Sandy Loam	13/0	10YR	5/3		Soil		Бюску	moderate			
32.45	Medium	25%	10YR	3/6		Disturbed		Dissing	Moderate	Firm		
22-42	Sandy Loam	LJ/0	7.5YR	4/4		Soil		DIUCKy				
45 72	Medium	20%	10YR	4/4		Disturbed		Placky	Moderate	Firm		
43-72	Sandy Loam	20%	7.5YR	4/4		Soil		διυζκύ				
77-84	Loamy	15%	7.5YR	4/4		Disturbed		Blocky	Weak	Friable		
72-04	Medium Sand	1.570	10YR	3/4		Soil		DIUCKy	WCan			
84-108	Loamy	10%	10YR	3/3		Disturbed		Blocky	Weak	Friable		
0-1-100	Medium Sand	10/0	10YR	4/4		Soil		DIOCKy	WCan			
108-120	Silt Loam	10%	10YR	4/3				Blocky	Moderate	Firm		
100-120	Sitt Luain	10/0						DIUCKy	MODELALE	· · · · · ·		
120 120	Hedium Sand	E0/	10YR	5/3				Cinglo grain	Structurology	Lassa		
120-130	Meuluin sahu	3/0						Siligle grain	Structuretess	LOUSE		
Comments	No limiting lay	yer observ	/ed. Most	of the so	il had been disturbe	ed during constru	ction of Holdin	g Tank at 13 f	eet deep.			

	Addit	ional	Soil Obser	vation Log	S	Project ID:		UNIVERSITY OF MINNESOT ONSITE SEWAGE TREATMEN PROGRAM	
	Client:	ISD 83	4 - Stillwater Area	a Public Schools	Locat	ion / Address:	11530 Hu	Idson Blvd N, Lak	e Elmo, MN 55042
Soil parent material(s): (Check all that apply) 🛛 Outwash 🗆 Lacustrine 🖾 Loess 🗆 Till 🔅 Alluvium 🔅 Bedrock 🔅 Organic Matter								ic Matter	
Landscape P	dscape Position: (check one) Summit Shoulder Back/Side Slope Foot Slope Slope Slope Slope Slope Linear, Linear						ar, Linear		
Vegetation:		Lawn	Soi	l survey map units:	49	Slope %:	0.0	Elevation (ft):	102.5
Weather Co	nditions/Time	of Day:		Overcast / 9	:40 am		Date:	0:	3/26/20
Observatio	n #/Location:		SP	4 / See Map		Obse	ervation Type:	ç	Soil Pit
Depth (in)	Texture	Rock	Matrix Color(s)	Mottle Color(s)	Redox Kind(s)	Indicator(s)	l	Structure	I
,		Frag. %	10/0 2/2		Disturbed		Shape	Grade	Consistence
0-22	Medium Sandy Loam	15%			Disturbed		Blocky	Moderate	Firm
					5011				
22-36	Medium	25%	10YR 3/6		Disturbed		Blocky	Moderate	Firm
	Saliuy Luain		7.5YR 4/4		Soil				
36-66	Medium	20%	10YR 4/4		Disturbed		Blocky	Moderate	Firm
50-00	Sandy Loam	20%	7.5YR 4/4		Soil		Бюску	moderate	
<u> </u>	Loamy	16%	7.5YR 4/4		Disturbed		Placky	Madarata	Firm
00-00	Medium Sand	13%	10YR 3/4		Soil		ыоску	Moderate	FILII
80.06	Loamy	10%	10YR 3/3		Disturbed		Placky	Modorato	Firm
80-90	Medium Sand	10%	10YR 4/4		Soil		БЮСКУ	moderate	FILI
0(120	Cilt Loom	1.0%	10YR 4/3				Die elu /	Madarata	Firm
96-120	Sitt Loam	10%					ыоску	moderate	FILM
120 420	Modium Cond	E0/	10YR 5/3				Single arei-	Structure las-	Locas
120-130	medium sand	ン %					Single grain	Structureless	LOOSE
Comments	No limiting la	yer observ	ved. Most of the so	il had been disturbe	ed during construc	ction of Holdin	g Tank at 13 f	eet deep.	

Soil Observation Log

PROGRAM	TAL					•	Project ID:			v 04.02.2019
Client:	ISD	834 - Stil	lwater Ar	ea Public	: Schools	Locati	on / Address:	11530 Hւ	idson Blvd N, Lak	e Elmo, MN 55042
Soil parent r	naterial(s): (Cl	heck all th	at apply)	□ O(utwash 🗆 Lacustrine	☑ Loess	Alluviur	n 🗆 Bedroo	ck 🗆 Organic I	Matter
Landscape P	osition: (check	(one)	🛛 Summit	□ Should	er 🗆 Back/Side Slope	e 🗆 Foot Slope	□ Toe Slope	Slope shape	Line	ear, Linear
Vegetation:		Lawn		Soi	survey map units:	49	Slope %:	0.0	Elevation (ft):	99.9
Weather Co	nditions/Time	of Day:			Overcast / 9:	:50 am		Date:	0.	3/26/20
Observatio	n #/Location:			SB2	2 - See Map		Obse	ervation Type:		Auger
Depth (in)	Texture	Rock	Matrix	Color(s)	Mottle Color(s)	Reday Kind(s)	Indicator(s)		Structure	
Deptil (III)	Texture	Frag. %	Matrix	colol (3)		Redox Kind(3)	indicator(s)	Shape	Grade	Consistence
0-5	Loam	0%	10YR	3/2				Blocky	Moderate	Firm
5-18	Silt Loam	0%	10YR	4/3				Blocky	Moderate	Firm
18-20	Medium Sandy Loam	5%	10YR	4/4				Granular	Weak	Friable
20-30	Medium Sand	5%	10YR	4/4				Single grain	Structureless	Loose
20.40		F0/	10YR	5/4	7.5YR 5/8	Concentrations	S1	Cia al a martin	Characteristics	
30-40	Medium Sand	5%			10YR 5/2	Depletions	S2	Single grain	Structureless	Loose
40.60	Madium Cand	E0/	10YR	5/3	10YR 5/2	Depletions	S2	Cingle grain	Structural acc	
40-60	Medium Sand	3%			7.5YR 5/6	Concentrations	S1	Single grain	Structureless	Loose
Comments	Limiting Laye	r = 30" - 91	7.2' - Most	t natural s	soil for the area. D	esigning Absorptio	on Area from t	his boring.		

Additional Soil Observation Logs

					•		Project ID:		Program	-11-
Client:	ISD	834 - Stil	lwater Ar	ea Public	: Schools	Locati	ion / Address:	11530 Hu	udson Blvd N, Lak	e Elmo, MN 55042
Soil parent r	naterial(s): (Cł	neck all th	nat apply)		Outwash 🗆 Lacustrii	ne 🛛 Loess 🗆	Till 🗆 Allu	ivium 🗆 Beo	drock 🗆 Orgar	nic Matter
Landscape P	osition: (check	one)	🛛 Summit	□ Should	der 🗆 Back/Side Slope	e □ Foot Slope	□ Toe Slope	Slope shape	Line	ear, Linear
Vegetation:		Lawn		Soi	l survey map units:	49	Slope %:	0.0	Elevation (ft):	99.7
Weather Cor	nditions/Time of	of Day:			Overcast / 10):00 am		Date:	0.	3/26/20
Observatio	on #/Location:			SB	1 - See Map		Obse	Observation Type: Auger		Auger
		Rock							Structure	
Depth (in)	Texture	Frag. %	Matrix	Color(s)	Mottle Color(s)	Redox Kind(s)	Indicator(s)	Shape	Grade	Consistence
0-12	Silt Loam	15%	10YR	3/2		Disturbed		Blocky	Moderate	Firm
0-12	Sitt Loain	13/0	7.5YR	4/3		Soil		Бюску	moderate	
12-20	Sandy Clay	20%	10YR	3/4		Disturbed		Blocky	Modorato	Firm
12-20	Loam	20%	10YR	4/3		Soil		DIUCKY	moderate	
20.20	Medium	10%	10YR	4/4		Disturbed		Blocky	Modorato	Firm
20-30	Sandy Loam	10%	7.5YR	4/4		Soil		БЮСКУ	moderate	1 11 11
30-42	Loamy	15%	7.5YR	5/3		Disturbed		Granular	Weak	Friable
30-42	Medium Sand	13/6	10YR	3/3		Soil		Grandiar	Weak	Thable
42-55	Medium Sand	5%	10YR	4/4	10YR 4/2	Depletions	S2	Single grain	Structureless	
Π <u></u> Ζ 33	Mediam Sand	J /0						Jingie gram	Structuretess	LOUSC
55,70	Medium Sand	10%	10YR	5/3	10YR 5/2	Depletions	S2	Single grain	Structureless	
55-70	Mediain Sand	10%			10YR 5/6	Concentrations	S1	Single grain	Schueturetess	LOUSE
Comments	Disturbed Soil	until 42"	- Found re	edox @ 42	2" (faint signs)					

Design Summary Worksheet

1. PROJECT INFORMATION						v 04.02.2019
Property Owner/Client: ISD 834 - 5	Stillwater Ar	rea Public Sch	ools		Project ID:	
Site Address: 11530 Hug	lson Blvd N	Lake Elmo A	N 55042		- Date:	04/06/20
	ison bive it,	Lake Lino, A	11 330-12		Dute.	04/00/20
2. DESIGN FLOW & WASTE STRENGTH	Attach	a data / estimato	e basis for Other Es	stablishme	ents	
Design Flow:	1440	GPD	Antic	ipated V	Vaste Type:	Other Est At-Risk
BOD:	400	mg/L TSS:	100 mg/	L Oi	l & Grease:	20 mg/L
Treatment Level:		Select Treatme	nt Level C for resid	lential se	ptic tank efflu	ent
3. HOLDING TANK SIZING						
Minimum Capacity: Residential =400 gal	/bedroom, Ot	ther Establishm	ent = Design Flow	x 5.0, ۸	Ainimum size	1000 gallons
Code Minimum Holding Tank Capacity:		Gallons	in	Tanks	or Compart	ments
Recommended Holding Tank Capacity:		Gallons	in	Tanks	or Compart	ments
Type of High Level Alarm:		-		(Set @	75% tank ca	apacity)
Comments:						
4. SEPTIC TANK SIZING						
A. Residential dwellings:						
Number of Bedrooms (Residential):						
Code Minimum Septic Tank Capacity:		Gallons	in	Tanks	or Compart	ments
Recommended Septic Tank Capacity:		Gallons	in	Tanks	or Compart	ments
Effluent Screen & Alarm (Y/N):		Model/1	уре:			
B. Other Establishments:						
Waste received by:	Gravity	144	IO GPD x	3	Days Hyd. R	etention Time
Code Minimum Septic Tank Capacity:	4320	Gallons	In 2	Tanks	or Compart	ments
Recommended Septic Tank Capacity:	4500	Gallons	In 2	Tanks	or Compart	ments
Effluent Screen & Alarm (Y/N):	Yes	Model/1	ype: PolyLok	525 or e	qual	
5. PUMP TANK SIZING						
Pump Tank 1 Capacity (Minimum):	2000	Gal	Pump Tank 2 C	apacity	(Minimum):	Gal
Pump Tank 1 Capacity (Recommended):	2000	Gal Pum	o Tank 2 Capaci	ty (Reco	mmended):	Gal
Pump 1 25.0 GPM Total Head	16.0	ft Pu	mp 2	GPM	Total Head	ft
Supply Pipe Dia. 2.00 in Dose Vol:	80.0	gal Suppl	y Pipe Dia.	-	Dose Vol:	Gal
		J- ''	· · <u>L</u>			

Design Summary Worksheet

6. SYSTEM AND DISTRIBU	TION TYPE	Project ID:		
Soil Treatment Type:	Mound	Distribution Typ	e: Pressure Distribution-	Level
Elevation Benchmark:	100 ft	Benchmark Location	n: Slab at ground level o	f SW cor.
MPCA System Type:	Type III	Distribution Medi	a: Rock	
Type III/IV Details: Ren	noval of Disturbed Soil	& Reduced CLR		
7. SITE EVALUATION SUM	MARY:			
Describe Limiting Condition:	Redoximorphic Feat	ures/Saturated Soils		
Lavers with >35% Rock Fr	agments? (yes/no) N	o If yes, describe bel	ow: % rock and layer thick	ness, amount of
soil credit and any addit	cional information for a	ddressing the rock fragme	nts in this design.	
Note:				
	Depth	Depth Elevatio	n	
Limiting Condition:	24 inches	2.0 ft 99.7	ft	
Minimum Req'd Separation:	36 inches	3.0 ft Elevatio	n Critical for syste	em compliance
Code Max System Depth:	Mound inches	-1.0 ft 100.7	ft	
This is the maximimum depth	to the bottom of the distrib	ution media. Negative Depth	(ft) means it must be a mound.	
Soit Livid Londing Dates				
Soit Hyd. Loading Rate:	1.20 GPD/ft ⁻	Percolation Rat		
		Note:		
measured Land Stope:	0.0 %	Note:		
8. SOIL TREATMENT AREA	A DESIGN SUMMARY			
Dispersal Area	ft ² Sidewa	Ill Depth in	Trench Width	ft
Total Lineal Feet	 ft No. of 1	renches	Code Max. Trench Depth	in
Contour Loading Rate	ft Min	. Length ft	Designed Trench Depth	in
Bed:				
Dispersal Area	ft ² Sidewa	ill Depth in	Maximum Bed Depth	in
Bed Width	ft Bed	d Length ft	Designed Bed Depth	in
Mound:				
Dispersal Area 120	00.0 ft ² Bee	d Length 120.0 ft	Bed Width	10.0 ft
Absorption Width 10	0.0 ft Clean S	and Lift 1.0 ft	Berm Width (0-1%)	13.2 ft
Upslope Berm Width 1	3.2 ft Downslo	pe Berm 13.2 ft	Endslope Berm Width	13.2 ft
Total System Length 14	6.4 ft Syste	m Width 36.4 ft	Contour Loading Rate	12.0 gal/ft

Design Summary Worksheet

_						Project ID:			
At-Grade:			•			•			
	Bed Width		ft	Bed Length		ft	Finished He	eight	ft
Contour L	oading Rate		gal/ft U	pslope Berm		ft	Downslope I	Berm	ft
Enc	dslope Berm		ft Sys	stem Length		ft	System V	Vidth	ft
Level & Equ	ual Pressure	Distributio	n						
No.	of Laterals	3	Perfora	tion Spacing	3	ft Per	rforation Diam	neter	3/16 in
Later	al Diameter	1.50	in Min [Oose Volume	0	gal	Max Dose Vo	lume	360 gal
Non-Level a	and Unequa	l Pressure D	istribution						
		D . C .	Pipe		D (0)				
	Elevation	Pipe Size	Volume	Pipe	Perf Size	Spacing	Spacing		
	(ft)	(in)	(gal/ft)	Length (ft)	(in)	(ft)	(in)	Ν	Ainimum Dose
Lateral 1			(3)					V	/olume
								Γ	
Lateral Z									gal
Lateral 3									
Lateral 4								Ν	Aaximum Dose
Lateral 5								۷	/olume
Lateral 6								Г	gal
9. Addit	ional Info fo	or At-Risk, I	HSW or Type	e IV Design					
A. Starti	ng BOD Cond	entration =	Design Flow	X Starting B	OD (mg/L) >	< 8.35 ÷ 1,00	00,000		
10	08 gnd	X 2	23 mg/l	- X 8 35 ÷ 1 0	00.00(=	1.88	lbs BOD/day		
	50 500					1.00		y	
B. Targe	t BOD Conce	entration = I	Design Flow	X Target BOI) (mg/L) X 8	3.35 ÷ 1,000,	,000 T		
10	08 gpd	X 22	23 mg/L	X 8.35 ÷ 1,0	00,000 =	1.88	lbs. BOD/day	y	
			Lt	os. BOD To B	e Removed:	0.00			
Pre	Treatment	Technology:					*Must /	Meet o	r Exceed Target
C	Disinfection [·]	Technology:					*Requi	red for	Levels A & B
C. Organ	ic Loading t	o Soil Treatr	nent Area:						
22	23 mg/L	X 10	08 gpd	x 8.35 ÷ 1,0	00,000 ÷	1200	ft ² =	0.001	56 lbs./day/ft ²
10. Comm	nents/Specia	al Design Co	nsideration	s:					
	•	-							
1. The estir	mated desig	n flow is cale	culated for '	12 full-time e	employess; 2	200 bus drive	ers and 5 visit	ors per	r day.
2. Soil Abso	orption Area	(mound) wil	l be divided	into two zor	nes of 10' x (60'.			
3. Disturbe	d soil below	the absorpt	ion area wil	l be dugout a	nd replaced	l with washe	ed mound sand	d.	
4. The exist	ting Manhole	e & 3,000-ga	llon Septic 7	Fank will be i	removed.				
5. The flow	to the mou	nds will be r	estricted to	70% of Desig	n Flow. If f	low exceeds	s 1,008 gallon:	s in 24	-hours, an Alarm
Will Sound.	ernating Pun	nns will he u	used to Time	-Dose the flo	w to the m	ounds			
7. Cap drai	n from Shop	Floor to Mai	nhole. Insta	Ill new Holdi	ng Tank for	flow.			
L	1								
I here	by certify th	nat I have co	mpleted thi	s work in acc	ordance wi	th all applica	able ordinanco	es, rule Г	es and laws.
Je	esse Kloeppn	er		2 Klym			L4043		4/6/2020
	(Designer)			(Signatu	e)	(L	icense #)	-	(Date)

Flow Estimation: Other Establishments

MINNESOTA POLLUTION CONTROL AGENCY

					v 04.02.2019	
Establishment	7081 Specified Type of Establishment	Unit	# of Units	Design Flow per Unit (See Table I)	Total Avg Daily Flow	
1	Office	employee	12	15.00	180	
2	Office	visitor	5	4.00	20	
3	Public lavatory	user	200	5.00	1000	
4						
5						
		Total Flow	v 7081 Estal	blishments (gpd)	1200	
Establishment	NON 7081 Specified Type of Establishment	Unit	# of Units	Design Flow per Unit	Total Avg Daily Flow	
6						
7						
8						
9						
10						
		Total Flow Nor	n-7081 Estal	blishments (gpd)		
			Safe	ety Factor (gpd)	240.00	
Total Flow 7081 and Non 7081 Establishments (gpd)						

from Ot	her Establishme	nts
Type of Facility	BOD ₅ (mg/L)	BOD ₅ (lbs/unit/day)
Airports		
Per passenger	400 - 500	0.02
Per employee	400 - 500	0.05
Apartment houses	240 - 400	0.175/multiple family
Assembly hall (no kitchen)	240 - 400	0.01/seat
Boarding school	240 - 400	0.208/student
Bowling alley (no kitchen)	240 - 400	0.15/lane
Camps		
Construction (Semi-permanent)	400 - 500	0.140
Country club (member)	400 - 500	0.052/member
Country club (resident)	240 - 400	0.208/resident
Day (no meals)	400 - 500	0.031
Luxury	400 - 500	0.208
Church (no kitchen)	240 - 400	0.02/seat
Country club	400 - 800	0.208/member
Personnel addition	240 - 400	0.04/employee
Day school	240 - 400	0.031/student
Add for showers	240 - 400	0.011/student
Add for cafeteria	500 - 700	0.031/meal
actory	/ ••	
No showers	240 - 400	0.073/employee
With showers	240 - 400	0.083/employee
	210 100	0.0057 cmployee
Ordinany restaurant	600 - 1500	0.35/seat
24 Hour rostaurant	600 1500	0.50/seat
Ercoway rostaurant	600 1500	0.30/seat
The way restaurant	400 800	0.10/seat
	400 - 800	0.70/100 soft
	200 - 600	0.04/amplausa
	200 - 800	0.04/employee
	1000 - 2000	0.80/seat
Kitchen Waste	600 - 1500	0.015/meat
Additional for here & carditail lawrence	600 - 1500	0.021/customer
Additional for bars & cocktail lounges	600 - 1500	
Hospital (not including personnel)	400 - 600	0.518/bed
aundromat	600 - 800	2.0/machine
Nobile home park	240 - 400	0.40/space
Nobile home park	240 - 400	0.140/person
Notel, Hotel	240 - 400	0.083/bed
Motel, Hotel	240 - 400	0.14/person
Nursing home (not including kitchen or aundry)	400 - 600	0.26/bed
Office building (per 8 hour shift)	240 - 400	0.05/employee
ark, toilets only	400 - 600	0.01/person
ark, bathhouse and flush toilets	240 - 400	0.021/person
Resort hotel, cottage	240 - 400	0.15/room
Add for self-service laundry	600 - 800	2.0/machine
Service station	240 - 400	0.50/toilet or urinal
ervice station	240 - 400	0.021vehicle served
hopping center (no food service or aundry)	400 - 600	0.30/1000 sqft
Shopping center (no food service or aundry)	400 - 600	0.050/employee
Sports Stadium	400 - 600	0.20/person
wimming pool	300 - 500	0.021/person
Theaters	000	
Drive-in	400 - 500	0.010/car space
Indoor	240 - 400	0.010/seat
Fravel trailer or RV park		
No water/sewer book up	400 - 800	0.25/space
With water and rower	400 - 000	0.35/space
With water and sewer	400 - 000	0.55/space

1 DESIGN FLOW & WASTE STRENGTH Attach data / estimate basis for Other Establishments
Design Flow: 1440 GPD Anticipated Waste Type: Other Est At-Risk
BOD: 400 mg/L TSS: 100 mg/L
2 SEPTIC REMOVAL RATE THROUGH SEPTIC TANKS
A. Typical removal of BOD and TSS in primary sedimentation (septic) tanks is calculated as
a function of the detention time and constituent concentration represented in the equalization below:
$R = \frac{t}{R} = \frac{R}{R} = \frac{R}{R}$
a + bt $t =$ nominal detention time, h
a, b = empirical constants
Empirical constant at 20 C
ltem a, h b
BOD 0.018 0.02
TSS 0.0075 0.014
Reference = pg. 303-304 "Small and Decentralized Wastewater Management Systems" - Crites & Tchobanoglous
B. Equation Removal Percentage Equation (BOD): 7 h ÷ (0.018 + (0.02 * 7 h) = 44 %
C. Equation Removal Percentage Equation (TSS): $7 h \div (0.0074 + (0.014 * 7 h) = 66 \%$
D. Expected POD Concentration after min. of 2 days of retention time
Starting BOD Concentration = 400 mg/L Septic Tank Removal percentage: 44 %
Equation: 400 mg/L x 44 % = 177 mg/L
THEN 400 mg/L - 177 mg/L = 223 mg/L
Expected BOD Concentration from Septic Tank Effluent: 223 mg/L BOD
E. Expected TSS Concentration after min. of 3 days of retention time
Starting TSS Concentration = 100 mg/L Septic Tank Removal percentage: 66 %
Equation: 100 mg/L x 66 $\% = 66$ mg/L
THEN 100 mg/L - 66 mg/L = 34 mg/L
Expected TSS Concentration from Septic Effluent: 34 mg/L TSS

	E STRENGTH LOAD	ING RATES - BOTT	UM AREA UNL I		
	TABLE 5.1 Maxin	num Waste Strengt	n Loading Rates—I	Bottom Area Only	
	Soil Loading Rate (gpd/ft2)	Pounds of BOD5/ft2/day	Pounds of TSS/ft2/day	Pounds of FOG/ft2/day	
	1.2	0.0017	0.0006	0.0003	
	0.78	0.0011	0.0004	0.0002	
	0.68	0.0009	0.0003	0.0001	
	0.6	0.0009	0.0003	0.0001	
	0.52	0.0008	0.0003	0.0001	
	0.5	0.0007	0.0003	0.0001	
	0.45	0.0006	0.0002	0.0001	
	0.42	0.0006	0.0002	0.0001	
	Based on organic loading concentrations of BOD5	g to a Type I system with of 170 mg/L, TSS of 60 m	design flow and bottom a g/L. and FOG of 25 mg/L	area loading with	
A. Maximum Waste	e Strength Loading	Rate based on So	l Loading Rate		
Soil Hydraulic Lo	ading Rate (SHLR) :	1.2 gpd/sc	ıft		
BOD	Constant per SLR:	0.0017 Pounds	s of BOD5/ft2/day:		
TSS	Constant per SLR:	0.0006 Pounds	s of TSS/ft2/day:		
C. "Choosen I	Maximum Flow to S	K Design Worksne	gallons		
C. Size of Bottom	Area of Absorption	Area based on So	il Hydraulic Load	ing Rate - Level C effluent	
Pequired Square	Feet based on SHU	P - Time-Dosed Fl			
1008 gpd	÷ 1.2	gpd/sqft 84	0 ft ²		
D. Size of Bottom	Area of Absorption	Area based on BC	D to Maximum W	aste Strength Loading Rates	
BOD Concentrat	ion = Time-Dosed Fl	ow X Septic Tank I	Effluent BOD (mg/	L) X 8.35 ÷ 1,000,000	
	X 223	mg/L X 8.35 ÷ 1,0	00,000 = 1.	88 Ibs. BOD/day	
1008 gpd					
1008 gpd Required Square	Feet for removal o	f lbs. BOD/day = ll	os. BOD/day x Max	kimum Pounds of BOD5/ft2/da	У
1008 gpd Required Square	Feet for removal o BOD/day ÷	f lbs. BOD/day = ll 0.0017 Max F	os. BOD/day x Max Pounds of BOD5/ft	ximum Pounds of BOD5/ft2/da $r^2/day = 1103$ ft ²	у
L 1008 gpd Required Square 1.88 lbs. I E. Size of Bottom	Feet for removal o BOD/day ÷ Area of Absorption	f lbs. BOD/day = ll 0.0017 Max F Area based on TS	os. BOD/day x Max Pounds of BOD5/ft S Maximum Wast	kimum Pounds of BOD5/ft2/da 2 ² /day: = 1103 ft ² e Strength Loading Rates	у
1008gpdRequired Square1.88lbs.E. Size of BottomTSS Concentration	Feet for removal o BOD/day ÷ Area of Absorption on = Time-Dosed Flo	f lbs. BOD/day = ll 0.0017 Max F Area based on TS ow X Septic Tank E	os. BOD/day x Max Pounds of BOD5/ft S Maximum Waste ffluent TSS (mg/L	kimum Pounds of BOD5/ft2/da ft^2 e Strength Loading Rates) X 8.35 ÷ 1,000,000	у
1008 gpd Required Square 1.88 lbs. E. Size of Bottom TSS Concentration 1008 gpd	Feet for removal o BOD/day ÷ Area of Absorption on = Time-Dosed Flo X 34	f lbs. BOD/day = ll 0.0017 Max F Area based on TS pw X Septic Tank E mg/L X 8.35 ÷ 1,0	os. BOD/day x Max Pounds of BOD5/ft S Maximum Waste ffluent TSS (mg/L 00,000 = 0.	kimum Pounds of BOD5/ft2/da ² /day: = 1103 ft ² e Strength Loading Rates) X 8.35 ÷ 1,000,000 28 lbs. TSS/day	у
1008 gpd Required Square 1.88 lbs. E. Size of Bottom TSS Concentratio 1008 gpd Required Square	Feet for removal o BOD/day ÷ Area of Absorption on = Time-Dosed Flo X 34 Feet for removal o	f lbs. BOD/day = ll 0.0017 Max F Area based on TS ow X Septic Tank E mg/L X 8.35 ÷ 1,0 f lbs. TSS/day = lb	os. BOD/day x Max Pounds of BOD5/ft S Maximum Waste ffluent TSS (mg/L 00,000 = 0. s. TSS/day x Maxin	kimum Pounds of BOD5/ft2/da ² /day: = <u>1103</u> ft ² e Strength Loading Rates) X 8.35 ÷ 1,000,000 28 lbs. TSS/day mum Pounds of TSS/ft2/day	у

4 DESIGNED SOIL TREATMENT AREA
A. Summary of Minimum Size of Soil Treatment Area (STA) - Bottom Only
SHLR 840
BOD 1103 ft ²
TSS 472 ft ²
Designer's Choice 1200 ft ² *must be greater than largest Minimum STA
B. Safety Factor for Designer's Choice of Soil Treatment Area - lbs./BOD/day/ft2
Safety Factor for lbs./BOD/ft2 109%
223 mg/L X 1008 gpd x 8.35 \div 1,000,000 \div 1200 ft ² = 0.00156 lbs./day/ft ²
Max 0.0017 lbs./day/ft ² / Actual 0.00156 lbs./day/ft ² = 109% safety percentage
C. Safety Factor for Designer's Choice of Soil Treatment Area - Ibs./TSS/dav/ft2
Safety Factor for lbs /TSS/ft2 254%
$34 \text{ mg/L X} \qquad 1008 \text{ gpd } \times 8.35 \div 1,000,000 \div \qquad 1200 \text{ ft}^2 = \boxed{0.00024} \text{ lbs./day/ft}^2$
Max 0.0006 lbs./day/ft ² / Actual 0.00024 lbs./day/ft ² = 254% safety percentage
It may be advisable to oversize the absorption area by 50% and divide the system into 3 zones for dosing and resting cycles if secondary treatment is not employed (a must for MSTS - MN Rules Chapter 7081.0270, Subp. 5 B 3).
D. Number of Zones for Soil Treatment Area
Designer Choice of Zones 2 zones
Absorption Area per Zone 600 ft ²

1 DESIGN FLOW & WASTE STRENGTH	Attach data / esti	mate basis for Other E	Establishments
Design Flow:	1440 GPD	Antici	ipated Waste Type: Other Est At-Risk
Maximum BOD:	850 mg/L /	Maximum TSS:	500 mg/L
2 SEPTIC REMOVAL RATE THROUGH S	SEPTIC TANKS		
A. Typical removal of BOD and TSS in	n primary sedimentat	ion (septic) tanks	is calculated as
a function of the detention time ar	nd constituent conce	ntration represen	ted in the equalization below:
	: R =	expected remov	al efficiency, % *Max. 7 hours
a +	bt <i>t</i> =	nominal detention	on time, h
	a, b	= empirical consta	ants
	Empirical constant at	20 C	
Item	a, h	b	
BOD	0.018	0.02	
TSS	0.0075	0.014	
Reference = pg. 303-304 "Small and	d Decentralized Wastewate	r Management Systems"	' - Crites & Tchobanoglous
B. Equation Removal Percentage	e Equation (BOD):	7 h ÷ (0.018 + (0.0	2 * 7 h) = 44 %
C. Equation Removal Percentag	e Equation (TSS): 7	′ h ÷ (0.0074 + (0.0	14 * 7 h) = 66 %
D. Empeted DOD Computer time of the			
D. Expected BOD Concentration after	min. of 3 days of re	tention time	
Starting BOD Concentration =	850 mg/L	Septic Tank Re	emoval percentage: 44 %
Equation: 850 mg/L x	44 % = 377	mg/L	
THEN 850 mg/L -	377 mg/L =	473 mg/l	L
Expected BOD Concentration from Sept	ic Tank Effluent:	473 mg/L BOD	
E. Expected TSS Concentration after	min. of 3 days of ret	ention time	
Starting TSS Concentration =	500 mg/L	Septic Tank Re	emoval percentage: 66 %
Equation: 500 mg/L x	66 % = 332	mg/L	
THEN 500 mg/L -	332 mg/L =	168 mg/l	L
Expected TSS Concentration from	Septic Effluent:	168 mg/L TSS	

3 MAXIMUM WASTE	STRENGTH LOAD	ING RATES - BOTT	OM AREA ONLY		
	TABLE 5.1 Maxim	num Waste Strengt	h Loading Rates—E	Bottom Area Only	
	Soil Loading Rate (gpd/ft2)	Pounds of BOD5/ft2/day	Pounds of TSS/ft2/day	Pounds of FOG/ft2/day	
	1.2	0.0017	0.0006	0.0003	
	0.78	0.0011	0.0004	0.0002	
	0.68	0.0009	0.0003	0.0001	
	0.6	0.0009	0.0003	0.0001	
	0.52	0.0008	0.0003	0.0001	
	0.5	0.0007	0.0003	0.0001	
	0.45	0.0006	0.0002	0.0001	
	0.42	0.0006	0.0002	0.0001	
	Based on organic loading	g to a Type I system with	design flow and bottom	area loading with	
		01 1/0 mg/L, 133 01 00 m	ig/ c. and i OG OI 25 illg/ L		
Soil Hydraulic Loa BOD (ding Rate (SHLR) : Constant per SLR:	1.2 gpd/sc 0.0017 Pound	qft s of BOD5/ft2/day:		
		0.000/	,		
TSS	Constant per SLR:	0.0006 Pound	s of TSS/ft2/day:		
B. Timed-Dose Flow	v from "Pump Tan	k Design Workshe	et (Time Dose)"		
C. "Choosen M	aximum Flow to ST	TA": 1008	gallons		
C. Size of Bottom A	rea of Absorption	Area based on So	il Hydraulic Load	ing Rate - Level C ef	ffluent
Required Square	Feet based on SHU	R = Time-Dosed Flo	ow X SHI R		
1008 gpd	÷ 1.2	gpd/sqft 84	40 ft ²		
D. Size of Bottom A	rea of Absorption	Area based on BC	DD to Maximum W	aste Strength Loadi	ng Rates
BOD Concentration	on = Time-Dosed Fl	ow X Septic Tank	Effluent BOD (mg/	L) X 8.35 ÷ 1,000,000	0
1008 gpd	X 473	mg/L X 8.35 ÷ 1,0	00,000 = 3.	98 lbs. BOD/day	
Required Square	Feet for removal o	f lbs. BOD/day = ll	bs. BOD/day x Ma>	kimum Pounds of BO	05/ft2/day
3.98 lbs. B	OD/day ÷	0.0017 Max I	Pounds of BOD5/ft	2/day: = 2344	ft ²
					<u>.</u>
E. Size of Bottom A	rea of Absorption	Area based on TS	S Maximum Wast	e Strength Loading I	Rates
TSS Concentratio	n = Time-Dosed Flo	ow X Septic Tank E	ffluent TSS (mg/L) X 8.35 ÷ 1,000,000	
1008 gpd	X 168	mg/L X 8.35 ÷ 1,0	00,000 = 1.	42 lbs. TSS/day	
Required Square	Feet for removal o	f lbs. TSS/day = lb	s. TSS/day x Maxi	mum Pounds of TSS/	ft2/day
1.42 lbs. T	SS/day ÷	0.0006 Max P	ounds of TSS/ft2/da	ay: = 2360	ft ²

4 DESIGNED SOIL TREATMENT AREA					
A. Summary of Minimum Size of Soil Treatment Area (STA) - Bottom Only					
SHLR 840					
BOD 2344 ft ²					
TSS 2360 ft^2					
Designer's Choice 2400 ft ² *must be greater than largest Minimum STA					
B. Safety Factor for Designer's Choice of Soil Treatment Area - lbs./BOD/day/ft2					
Safety Factor for lbs./BOD/ft2 102%					
473 mg/L X 1008 gpd x 8.35 \div 1,000,000 \div 2400 ft ² = 0.00166 lbs./day/ft ²					
Max 0.0017 lbs./day/ft ² / Actual 0.00166 lbs./day/ft ² = 102% safety percentage					
C. Safety Factor for Designer's Choice of Soil Treatment Area - Ibs./TSS/dav/ft2					
Safety Factor for lbs./TSS/ft2 102%					
$168 mg/L X 1008 gpd x 8.35 \div 1,000,000 \div 2400 ft^2 = 0.00059 lbs./day/ft^2$					
Max 0.0006 lbs./day/ft ² / Actual 0.00059 lbs./day/ft ² = 102% safety percentage					
It may be advisable to oversize the absorption area by 50% and divide the system into 3 zones for dosing and resting cycles if secondary treatment is not employed (a must for MSTS - MN Rules Chapter 7081.0270, Subp. 5 B 3).					
D. Number of Zones for Soil Treatment Area					
Designer Choice of Zones 2 zones					
Absorption Area per Zone 1200 ft ²					

Mound Design Worksheet

<1% Slope

1.	1. SYSTEM SIZING: Project ID:							v 04	4.02.2019		
	A. Design F	low :		14	40	GPD		TAB	SLE IXa	ı	
	B. Soil Loading Rate:		1.20		GPD/ft ²	LOADING RATES F AND ABSORP	FOR DETERMINING BOTTOM ABSORPTION AREA				
	C Depth to	n limi	ting Condition.	2	0	ft		Treatment Level C Treatment Level A, A-2, B			
	D. Percent	Land	Slope:	0.	0	%	Percolation Rate (MPI)	Absorption Area Loading Rate (gpd/ft ²)	Mound Absorption Ratio	Absorption Area Loading Rate (gpd/ft ²)	Mound Absorption Ratio
	E. Design I	٨edia	Loading Rate:	1.	2	GPD/ft ²	<0.1	-	1	-	1
	F Mound	hsorr	tion Ratio	1 (າດ]	0.1 to 5 0.1 to 5 (fine sand	1.2	1	1.6	1
		10301	Table I				and loamy fine sand)	0.6	2	1	1.6
		мони		RATES			16 to 30	0.78	1.5	0.78	2
		noon		JIVATES		atour	31 to 45	0.5	2.4	0.78	2
	Measured	← OR	Texture - derived	l	Loa	ading	46 to 60	0.45	2.6	0.6	2.6
	Perc Rate	→	mound absorption ra	atio	Ra	ate:	61 to 120	-	5	0.3	5.3
	≤ 60mpi		1.0. 1.3. 2.0. 2.4. 2	.6 →		:12	>120	-	-	-	-
		←		-	⊢	*	Systems with t	hoso valu	les are n	ot Type I	systems
	61-120 mpi	OR →	5.0	\rightarrow	1	:12	Contour Load	ling Rate	(linear lo	bading rat	te) is a
	≥ 120 mpi*		>5.0*			<6*		recomme	nded val	ue.	,
	- 120 mp.										
~	2. DISPERSAL MEDIA SIZING										
2.	DISPER	AL M	EDIA SIZING								
2.	A. Calculat	e Disi	EDIA SIZING Dersal Bed Area: De	sign Fl	ow (1.	A) ÷ Desi	ign Media Load	ing Rate	(1.E) = ft	.2	
2.	A. Calculat	e Dis	Dersal Bed Area: De	esign Flo	ow (1. 2	A) ÷ Desi	ign Media Load = 1200	ing Rate	(1.E) = ft	_2	
2.	A. Calculat	e Dis 14	bersal Bed Area: De	esign Flo 1.	ow (1. 2	A) ÷ Desi GPD/ft ²	ign Media Load = 1200	ing Rate	(1.E) = ft	2	
2.	A. Calculat	e Dis 144 a large	Dersal Bed Area: De 40 GPD ÷ er dispersal media a	esign Flo 1. area is o	ow (1. 2 desire	A) ÷ Desi]GPD/ft ² d, enter :	ign Media Load = 1200 size:	ing Rate ft ² ft ²	(1.E) = ft	.2	
2.	A. Calculat	e Dis 144 a large	EDIA SIZING oersal Bed Area: De 40 GPD ÷ er dispersal media a al Bed Width:	esign Flo 1. area is o 1	ow (1. 2 desire 0	A) ÷ Desi GPD/ft ² d, enter	ign Media Load = 1200 size: an not exceed	ft ² ft ² ft ²	(1.E) = ft	2	
2.	A. Calculat If a B. Enter Di C. Calculat	ispers	Dersal Bed Area: De GPD ÷ GPD ÷ er dispersal media a al Bed Width:	esign Flo 1. area is o 10 Bed W	ow (1. 2 desire 0 idth ()	A) ÷ Desi]GPD/ft ² d, enter]ft C 2.B) X De	ign Media Load = 1200 size: an not exceed	ing Rate ft ² ft ² 10 feet.	(1.E) = ft	_2	
2.	A. Calculat If a B. Enter Di C. Calculat	e Disp 14 a large spers ce Cor	EDIA SIZING persal Bed Area: De 40 GPD ÷ er dispersal media a al Bed Width: htour Loading Rate:) ft ² x 1	esign Flo 1. area is o Bed W	ow (1. 2 desire 0 idth (2	A) \div Desi GPD/ft ² d, enter \therefore d, enter \therefore ft C 2.B) X De	ign Media Load = 1200 size: an not exceed sign Media Loa	ing Rate ft ² ft ² 10 feet. ding Rate	(1.E) = ft e (1.E) <i>Can no</i>	2 t exceed	Table 1
2.	A. Calculat If a B. Enter Di C. Calculat	e Dis 14 14 14 14 14 14 14 14 14 14 14 14 14	EDIA SIZING persal Bed Area: De 40 GPD ÷ er dispersal media a al Bed Width: htour Loading Rate: 0 ft ² X 1 imum Dispersal Rec	esign Flo 1. area is o Bed W .2	ow (1. 2 desire 0 idth (2 GPD/1	A) ÷ Desi GPD/ft^2 d, enter ft C 2.B) X De $ft^2 = $	ign Media Load = 1200 size: an not exceed sign Media Loa 12.0 ga	ing Rate ft ² ft ² 10 feet. ding Rate	(1.E) = ft e (1.E) Can no	2 t exceed	Table 1
2.	A. Calculat If a B. Enter Di C. Calculat D. Calculat	ispers ce Cor ce Cor 10 ce Min	EDIA SIZING persal Bed Area: De 40 GPD ÷ er dispersal media a al Bed Width: htour Loading Rate: D ft² X 1 imum Dispersal Bed	esign Flo 1. area is o Bed W .2 d Lengt	ow (1. 2 desire 0 idth (2 GPD/1 h: Dis	A) \div Desi GPD/ft^2 d, enter \Rightarrow ft C 2.B) X De $ft^2 = $ persal Be	ign Media Load = 1200 size: <i>an not exceed</i> sign Media Loa 12.0 ga d Area (2.A) ÷	ling Rate ft ² ft ² 10 feet. Iding Rate I/ft Bed Widt	(1.E) = ft e (1.E) <i>Can no</i> :h (2.B) =	t exceed	<i>Table 1</i> gth
2.	A. Calculat If a B. Enter Di C. Calculat D. Calculat	a large ispers ce Cor 1(ce Min 12(EDIA SIZING persal Bed Area: De 40 GPD ÷ er dispersal media a al Bed Width: htour Loading Rate: D ft² X 1 imum Dispersal Bed 00 ft² ÷ 1	esign Flo 1. area is o Bed W .2 d Lengt 0	ow (1. 2 desire 0 idth (7 GPD/1 h: Dis ft =	A) ÷ Desi GPD/ft ² d, enter : ft C 2.B) X De ft ² = persal Be 120.	ign Media Load = 1200 size: <i>an not exceed</i> sign Media Loa 12.0 ga d Area (2.A) ÷ 0 ft	ing Rate ft ² ft ² 10 feet. Iding Rate	(1.E) = ft e (1.E) Can no :h (2.B) =	t exceed	<i>Table 1</i> gth
3.	A. Calculat If a B. Enter Di C. Calculat D. Calculat	ispers ce Oisp 144 ispers ce Cor 1(ce Min 12(PTION	EDIA SIZING persal Bed Area: De 40 GPD ÷ er dispersal media a al Bed Width: htour Loading Rate: D ft² X 1 imum Dispersal Bed 20 ft² ÷ 1 AREA SIZING	esign Flo 1. area is o Bed W .2 d Lengt 0	ow (1. 2 desire 0 idth (1 GPD/1 h: Dis ft =	A) \div Desi GPD/ft ² d, enter ft C 2.B) X De ft ² = persal Be 120.	ign Media Load = 1200 size: an not exceed sign Media Loa 12.0 ga d Area (2.A) ÷ 0 ft	ing Rate ft ² ft ² 10 feet. ding Rate	(1.E) = ft e (1.E) Can no :h (2.B) =	2 t exceed Bed Len	<i>Table 1</i> gth
3.	A. Calculat If a B. Enter Di C. Calculat D. Calculat ABSORF	ispers ce Cor ce Min 120 PTION ce Abs	EDIA SIZING persal Bed Area: De 40 GPD ÷ er dispersal media a al Bed Width: atour Loading Rate: 0 ft² X 1 imum Dispersal Bed 00 ft² ÷ 1 AREA SIZING orption Width: Bed .0 ft X 1	esign Flo 1. area is o Bed W .2 d Lengt 0 Width .0	ow (1. 2 desire 0 idth (2 GPD/1 h: Dis ft = (2.B) =	A) \div Desi GPD/ft ² d, enter ft C 2.B) X De ft ² = persal Be 120. X Mound 10.0	ign Media Load = 1200 size: an not exceed sign Media Loa 12.0 ga d Area (2.A) ÷ 0 ft Absorption Ra	ing Rate ft ² ft ² 10 feet. ding Rate l/ft Bed Widt	(1.E) = ft e (1.E) <i>Can no</i> th (2.B) = = Absorpt	t exceed Bed Lens	<i>Table 1</i> gth h
3.	A. Calculat If a B. Enter Di C. Calculat D. Calculat ABSORF A. Calculat	ispers ce Cor 14 ispers ce Cor 10 ce Min 120 cr Hon ce Abs 10 ces fro	EDIA SIZING persal Bed Area: De 40 GPD ÷ er dispersal media a al Bed Width: atour Loading Rate: D ft ² X 1 imum Dispersal Bed 00 ft ² ÷ 1 AREA SIZING orption Width: Bed .0 ft X 1 .0 ft X 1	esign Flo 1. area is o Bed W .2 d Lengt 0 Width .0 orption	ow (1. 2 desire 0 idth (2 GPD/1 h: Dis ft = (2.B) = Widt	A) \div Desi GPD/ft ² d, enter \Rightarrow ft C 2.B) X De ft ² = persal Be 120. X Mound 10.0	ign Media Load = 1200 size: <i>an not exceed</i> sign Media Loa 12.0 ga d Area (2.A) ÷ 0 ft Absorption Ra 0 ft ured from the	ing Rate ft ² ft ² <i>10 feet.</i> ding Rate l/ft Bed Widt	(1.E) = ft e (1.E) <i>Can no</i> th (2.B) = = Absorpt	t exceed Bed Leng	<i>Table 1</i> gth h
3.	A. Calculat If a B. Enter Di C. Calculat D. Calculat ABSORF A. Calculat B. For slop	ispers a large ispers ce Cor 10 ce Min 120 PTION ce Abs 10 es fro	EDIA SIZING persal Bed Area: De 40 GPD \div er dispersal media a al Bed Width: atour Loading Rate: 0 ft ² X 1 imum Dispersal Bed 00 ft ² \div 1 AREA SIZING orption Width: Bed .0 ft X 1 um 0 to 1%, the Absolution of the Be	esign Flo 1. area is o 10 Bed W .2 d Lengt 0 Width .0 orption d: Abso	ow (1. 2 desire 0 idth (2 GPD/1 h: Dis ft = (2.B) = Width	A) ÷ Desi GPD/ft ² d, enter : ft C 2.B) X De ft ² = [persal Be 120. X Mound 10.C n is meas width ()	ign Media Load = 1200 size: an not exceed sign Media Loa 12.0 ga rd Area (2.A) ÷ 0 ft Absorption Ra 0 ft ured from the 3.A) - Bed Wid	ing Rate ft ² ft ² <i>10 feet</i> . ding Rate l/ft Bed Widt tio (1.F) = bed equa	(1.E) = ft (1.E) (1.E) (2.B) = (1.E) (2.B) = (1.E) (2.B) = (1.E) (2.B) = (1.E) (2.B) = (1.E) (2.B) = (1.E) (2.B) = ft (2.B) (2.B) = ft (2.B) (2.B) = ft (2.B) (2.B) = ft (2.B) (2.B) = ft (2.B) (2.B) = ft (2.B) (2.B) = ft (2.B) = ft	t exceed Bed Leng	Table 1 gth h ons.
3.	A. Calculat If a B. Enter Di C. Calculat D. Calculat ABSORF A. Calculat B. For slop Absorpt	ispers ispers ispers is Cor 10 ise Min 120 PTION ise Abs 10 ion W	EDIA SIZING persal Bed Area: De 40 GPD \div er dispersal media a al Bed Width: atour Loading Rate: 0 ft ² X 1 imum Dispersal Bed 00 ft ² \div 1 AREA SIZING orption Width: Bed .0 ft X 1 m 0 to 1%, the Abse idth Beyond the Be 0 ft - 10	esign Flo 1. area is o Bed W .2 d Lengt d Lengt 0 Width .0 orption d: Abso	ow (1. 2 desire 0 idth (2 GPD/1 h: Dis ft = (2.B) = Widtl orptior ft) =	A) \div Desi GPD/ft ² d, enter \div ft C 2.B) X De ft ² = persal Be 120. X Mound 10.C n is meas n Width (3 2	ign Media Load = 1200 size: an not exceed sign Media Loa 12.0 ga d Area (2.A) ÷ 0 ft Absorption Ra 0 ft ured from the 3.A) - Bed Wid = 0.0	ing Rate ft ² ft ² 10 feet. ding Rate l/ft Bed Widt tio (1.F) = bed equa th (2.B) ÷	(1.E) = ft (1.E) <i>Can no</i> (h (2.B) = = Absorpt ally in bo 2 = Wid	t exceed Bed Leng	Table 1 gth h ons. d Bed

4.		DISTRIBUTION MEDIA: ROCK Project ID:
	Α.	Rock Depth Below Distribution Pipe
		6 in 0.50 ft
5.	,	DISTRIBUTION MEDIA: REGISTERED TREATMENT PRODUCTS: CHAMBERS AND EZFLOW
	Α.	Enter Dispersal Media:
	в.	Enter the Component: Length:ft Width:ft Depth:ft
	c.	Number of Components per Row = Bed Length divided by Component Length (Round up)
		ft ÷ ft = components/row
	D.	Actual Bed Length = Number of Components/row X Component Length: information for specific
		components X ft = application and design
	Ε.	Number of Rows = Bed Width divided by Component Width
		ft ÷ ft = rows Adjust width so this is a whole number.
	F.	Total Number of Components = Number of Components per Row X Number of Rows $x = 1 $ $x = 1 $ $x = 1 $
6		
0.	•	Colculate Clean Sand Lift: 2 feet minus Dopth to Limiting Condition - Clean Sand Lift (1 ft minimum)
	А.	
		3.0 ft - 2.0 ft = 1.0 ft Design Sand Lift (optional):
	В.	Upslope Mound Height = Clean Sand Lift + Depth of Media + Depth of Cover (1 ft)
	c	$\begin{bmatrix} 1.0 \\ 1.0 \end{bmatrix} [+ \begin{bmatrix} 0.00 \\ 0.00 \end{bmatrix} [+ \begin{bmatrix} 1.30 \\ 1.0 \end{bmatrix} [= \begin{bmatrix} 5.3 \\ 0.01 \end{bmatrix} [= \begin{bmatrix} 5.3 \\$
	с.	3.3 ft X 4.0 ft = 13.2 ft
	D.	Total Landscape Width = Berm Width + Dispersal Bed Width + Berm Width
		13.2 ft + 10.0 ft + 13.2 ft = 36.4 ft
	Ε.	Additional Berm Width necessary for absorption - Absorption Width - Total Landscape Width
		10.0 ft - 36.4 ft = 0 ft if number is negative (<0), value is ZERO
	F.	Final Berm Width = Additional Berm Width + Berm Width
		0 ft + 13.2 ft = 13.2 ft
	G.	Total Mound Width = Final Berm Width + Dispersal Bed Width + Final Berm Width
		$\begin{bmatrix} 13.2 \\ 14 \\ 15.2 \end{bmatrix}$ Tt + $\begin{bmatrix} 10.0 \\ 15.2 $
	н.	Iotal Mound Length = Final Berm Width + Dispersal Bed Length + Final Berm Width $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$\begin{bmatrix} 13.2 \\ 140.4 \end{bmatrix} = \begin{bmatrix} 140.4 \\ 11 \end{bmatrix}$
	۱. ۲	SetDacks from the Bed: Absorption width - Dispersal Bed Width divided by Z 10.0 ft $_{-}$ 10.0 $) / 2 - $
	l	

Mound Materials Worksheet

Project ID: v 04.02.2019								
A. Rock Volume : (Rock Below Pipe + Rock to cover pipe (pipe outside dia + ~2 inch)) X Bed Length X Bed Width = Volume								
(6 in + 3.5) + 12 120.0	ft X 10.0 ft = 950.0 ft^3							
Divide ft ³ by 27 ft ³ /yd ³ to calculate cubic yards:	950.0 $ft^3 \div 27 = 35.2$ yd^3							
Add 30% for constructability:	35.2 $yd^3 X$ 1.3 = 45.7 yd^3							
B. Calculate Clean Sand Volume:								
Volume Under Rock bed : Average Sand Depth x Media Widt 1.0 ft X 10.	Volume Under Rock bed : Average Sand Depth x Media Width x Media Length = cubic feet 1.0 ft X 10.0 ft X 120.0 ft = 1200.0 ft ³							
For a Mound on a slope from 0-1%								
Volume from Length = ((Upslope Mound Height - 1) X Absorp 3.30 ft - 1) X	$\frac{1100 \text{ Width Beyond Bed X Media Bed Length}}{120} \text{ ft} = 6.00}$							
Volume from Width = ((Upslope Mound Height - 1) X Absorpt 3.30 ft - 1) X X	tion Width Beyond Bed X Media Bed Width) 10 ft = 6.00							
Total Clean Sand Volume : Volume from Length + Volume fr6.0ft3+6.0	for Width + Volume Under Media $ft^3 + 1200$ $ft^3 = 1212.0$ ft^3							
For a Mound on a slope greater than 1%								
Upslope Volume : ((Upslope Mound Height - 1) x 3 x Bed Le ((ft - 1) X 3.0 ft	yngth) ÷ 2 = cubic feetX) ÷ 2 = ft ³							
Downslope Volume : ((Downslope Height - 1) x Downslope A ((ft - 1) X	$\frac{1}{10000000000000000000000000000000000$							
Endslope Volume : (Downslope Mound Height - 1) x 3 x Med (dia Width = cubic feet X							
Total Clean Sand Volume : Upslope Volume + Downslope Vo	olume + Endslope Volume + Volume Under Media ft ³ + ft ³ = ft ³							
Divide ft ³ by 27 ft ³ /yd ³ to calculate cubic yards:	1212.0 $ft^3 \div 27 = 44.9$ yd^3							
Add 30% for constructability:	44.9 $yd^3 X = 58.4 yd^3$							
C. Calculate Sandy Berm Volume:								
Total Berm Volume (approx): ((Avg. Mound Height - 0.5 ft t (3.3 - 0.5)ft X 36.	copsoil) x Mound Width x Mound Length) $\div 2$.4ft X146.4) $\div 2 = 7460.5$ ft ³							
Total Mound Volume - Clean Sand volume -Rock Volume = c 7460.5 ft ³ - 1212	Total Mound Volume - Clean Sand volume - Rock Volume = cubic feet 7460.5 ft ³ - 1212.0 ft ³ - 950.0 ft ³ = 5298.5 ft ³							
Divide ft ³ by 27 ft ³ /yd ³ to calculate cubic yards:	5298.5 $ft^3 \div 27 = 196.2$ yd^3							
Add 30% for constructability:	196.2 $yd^3 x 1.2 = 255.1 yd^3$							
D. Calculate Topsoil Material Volume: Total Mound Width X To	D. Calculate Topsoil Material Volume: Total Mound Width X Total Mound Length X .5 ft							
36.4 ft X 146	$ft X = 2664.5 ft^3$							
Divide ft ³ by 27 ft ³ /yd ³ to calculate cubic yards:	2664.5 $ft^3 \div 27 = 98.7$ yd^3							
Add 30% for constructability:	98.7 $yd^3 x 1.3 = 75.9 yd^3$							

Pressure Distribution Design Worksheet

	Project ID: v 04 02 2019											
											10	1.02.2017
1.	Media Bed Widt	h:					10 ft					
2.	2. Minimum Number of Laterals in system/zone = Roun					Rounde	ed up number of	[(Media	Bed Wi	dth - 4)	÷ 3] + 1	•
		[(10	- 4)	÷ 3] + ′	1 =	3 later	als	Does	not app	oly to at	-grades
3.	Designer Selecto	ed Numl	ber of L	aterals.	: t-arado		3 later	als				
4.	Select Perforati	ion Spac	ing:	ept mu	L-21 UUC.		3.00 ft	12	Geotes	Insulated acces	er	
5.	Select Perforation	ion Dian	neter Siz	ze:		Γ	3/16 in	1/4" perfora	tions spaced 3' ap	Dart 1"-2" o	im of rock	- 12" ·
6.	Length of Later	als = Me	edia Bed	l Length	- 2 Fee	t.		Perf	6" of rock oration sizing: ½"	" to ¼" Perfor	ation spacing: 2' t	to 3'
	60.0	- 2f	t =	58	3.0 f	t Pe	erforation can n	ot be cl	oser the	en 1 fooi	t from e	dge.
7.	Determine the <i>I</i> round down to t	Number .he near	of Perfo est who	oration : le numb	S <i>paces</i> . Der.	Divide	the Length of L	aterals	by the	Perfora	tion Spo	acing and
	Number of Perf	oration	Spaces =	= 58	3.0 f	ťt	÷ 3.0	ft	=	19	Spa	aces
8.	Number of Perf below to verify	orations the num	s per Lat	teral is perforat	equal to ions per	o 1.0 plu r lateral	us the <i>Number o</i> guarantees less	<i>f Perfor</i> than a	ration S _l 10% disc	<i>paces</i> . charge v	Check ta ariation	able . The
	value is double	with a c	enter m	anifold.						0		
	Perj	foration	s Per La	teral =	19) Sr	baces + 1 =		20	Perfs. Po	er Later	al
		Max	imum Num	ber of Per	forations P	er Lateral	to Guarantee <10% D	ischarge Va	ariation			
		1/4 Inch i	Perforation	IS				7/32	Inch Perfo	rations		
Perf	oration Spacing (Feet)	4	Pipe L	iameter (l	nches)	2	Perforation Spacing (Feet)	4	Pipe I	Diameter (I	nches)	2
	2	10	1%	192	30	60	2	11	1%	21	34	68
	21/2	8	12	16	28	54	21/2	10	14	20	32	64
	3	8	12	16	25	52	3	9	14	19	30	60
		3/16 Inch	Perforatio	ns				1/8 Inch Perforations				
Port	anation Spacing (Foot)		Pipe D)iameter (l	nches)		Perforation Spacing		Pipe (Diameter (I	nches)	
ren	oración spacing (reec)	1	1¼	11/2	2	3	(Feet)	1	114	11/2	2	3
	2	12	18	26	46	87	2	21	33	44	74	149
	21/2	12	17	24	40	80	21/2	20	30	41	69	135
	3	12	16	22	3/	/5	3	20	29	38	64	128
9.	9. Total Number of Perforations equals the Number of Perforations per Lateral multiplied by the Number of Perforated Laterals.											
	20 Pe	rf. Per L	_at. X		3 1	Number	of Perf. Lat. =	(50	Total Nu	imber of	f Perf.
10.	Spacing of lat	erals; N	Aust be	greater	than 1 1	foot and	no more than 3	feet:	[3.0	ft	
10.	10. Select Type of Manifold Connection (End or Center): End											
11.	11. Select Lateral Diameter (See Table): 1.50 in											

12.	Calculate the Square Feet per Perforation. Recommended value is 4-11 ft ² per perforation.						
	Does not apply to At-Grades						
a.	a. Bed Area = Bed Width (ft) X Bed Length (ft)						
	10 ft X 60 ft = 600 ft ²						
b.	Square Foot per Perforation = Bed Area divided by the Total Number of Perforations.						
	$600 ft^2 \div 60 perforations = 10.0 ft^2/perforations$						
13.	Select Minimum Average Head: 1.0 ft						
14.	Select <i>Perforation Discharge</i> (GPM) based on Table: 0.41 GPM per Perforation						
15.	Determine required Flow Rate by multiplying the Total Number of Perfs. by the Perforation Discharge.						
	60 Perfs X 0.41 GPM per Perforation = 25 GPM						
16.	Volume of Liquid Per Foot of Distribution Piping (Table II): 0.110 Gallons/ft						
17.	Volume of Distribution Piping =						
	= [Number of Perforated Laterals X Length of Laterals X (Volume of Volume of Liquid in Liquid Per Foot of Distribution Bining]						
	Pipe Liquid						
	3 X 58 ft X 0.110 gal/ft = 19.1 Gallons Diameter Per Foot (inches) (Gallons)						
18.	Minimum Delivered Volume = Volume of Distribution Piping X 4 1 0.045						
	10.1 role V 4 - 76.6 College						
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	2 0.170						
	manifold pipe, 4 0.661						
	pipe from pump						
	clean outs of						
	of pipe from pump						
Comm	nents/Special Design Considerations:						
Distril	bution Network for each Mound						

Basic Pump Selection Design Worksheet

MINNESOTA POLLUTION CONTROL AGENCY

1. PUMP CAPACITY	Project ID:					v (04.02.2019
Pumping to Gravity or Pressure Distrib	Pumping to Gravity or Pressure Distribution: Pressure						
1. If pumping to gravity enter the gallo	on per minute of the pump:		GPM (10 - 45	gpm)			
2. If pumping to a pressurized distribut	tion system:	25.0	GPM				
3. Enter pump description:		Equ	alization/Time Do	sing			
2. HEAD REQUIREMENTS						Soil tre & poi	eatment system nt of discharge
A. Elevation Difference	9 ft				th		<u>20- 0</u>
between pump and point of discharge:				supply line len	gui		
	4	Inlet pipe			Elevation		
B. Distribution Head Loss:	6 ft						
C. Additional Head Loss:	ft (due to special equipment,	, etc.)				y	
Distributio	- 1100011000		Table I.Frictio	on Loss in	Plastic	Pipe pe	r 100ft
Gravity Distribution = Oft	n Head Loss		Flow Rate	Pipe	Diame	ter (inch	es)
			(GPM)	1	1.25	1.5	2
Value on Pressure Distribution	on Minimum Average He on Worksheet:	ad	10	9.1	3.1	1.3	0.3
Minimum Average Head	Distribution Head I	220	12	12.8	4.3	1.8	0.4
1ft	5ft	.033	14	21.8	5./ 7 3	2.4	0.6
2ft	6ft		18	21.0	9.1	3.8	0.9
5ft	10ft		20		11.1	4.6	1.1
			25		16.8	6.9	1.7
D. 1. Supply Pipe Diameter:	2.0 in		30		23.5	9.7	2.4
			35			12.9	3.2
2. Supply Pipe Length:	45 ft		40			16.5	4.1
E. Friction Loss in Plastic Pipe per 100ft	from Table I:		45			20.5	5.0
			50				6.1
Friction Loss = 1.69	ft per 100ft of pipe		55				7.3
E Determine Fauivalent Pipe Length from	 n pump discharge to soil dispersal a	area discharge	60				8.0 10.0
point. Estimate by adding 25% to suppl	y pipe length for fitting loss. Supp	oly Pipe Length	70				11.4
(D.2) X 1.25 = Equivalent Pipe Length			75				13.0
			85				16.4
45 ft X 1.25	= 56.3 ft		95				20.1
G. Calculate Supply Friction Loss by multi	plying Friction Loss Per 100ft (Line	e E) by the <i>Equiv</i>	alent Pipe Length	(Line F) and	divide	by 100.	
Supply Friction Loss =							
1.69 ft per 100ft	X 56.3 ft	÷ 100	= 1.	0 ft			
						4. 6	
Supply Friction Loss (Line G)	the Elevation Difference (Line A),	the Distribution F	Head Loss (Line B)	, Additional	Head Lo	ss (Line C)	, and the
9.0 ft +	5.0 ft +	ft +	1.0	ft =	15.0	ft	
3. PUMP SELECTION							
A pump must be selected to deliver at least 25.0 GPM (Line 1 or Line 2) with at least 16.0 feet of total head.							
Comments:							
Pump calculations for each mou	und and supply line. Dua	l Alternating	g Pumps requ	ired.			
		-					

Pump Tank Design Worksheet (Time Dose)

MINNESOTA POLLUTION CONTROL AGENCY

		- 2 2									
	DETERA	WINE TANK CAPACITY AND D	DIMENSIONS				Pro	oject ID:			v 04.02.2019
1.	Α.	Design Flow (Design Sum. 1	(A):	144	10	GPD	в.	Tank Use:	D	osing	
	с.	70% of Design Flow		100)8	Gal					
	D.	Min. required pump tank c	apacity:	200)0	Gal	Ε.	Recommended capa	city:	2000	Gal
2.	Α.	Tank Manufacturer:	Wieser Pre	cast		1	В.	Tank Model:	W2	000-MR	
	с.	Capacity from manufactur	er:	214	1 6	Gallons		Note: Desig	n calculations are	e based on this sp	ecific tank.
	D.	Gallons per inch:		42.9	9	Gallons pe	r inch	Substitutin float or tin	g a different tank ner settings. Conto	model will chang act designer if ch	ze the pump langes are
	Ε.	Liquid depth of tank from	manufacturer:	53./	.0	inches		necessary.			
DE	TERMINE					1					
3	Calcula	te Volume to Cover Pump (7	The inlet of pump should b	be 4 in from	the bot	ttom of the	tank 8	t 2 inches of water co	overing the pump	is recommended)	
	(Pump a	and block height + 2 inches)	X Gallons Per Inch (2D)								
	((10 in +	2 inches) X 4	42.9 C	Gallons I	Per Inch	=	515 Ga	allons		
4	Minimu	um Delivered Volume = 4 X	Volume of Distribution Pip	oing:					_		
	-Item 1	18 of the Pressure Distribution	on or Item 11 of Non-level	l.		77		Gallons (minimum d	ose)	1.8 i	nches/dose
5	Calculat Design (te Maximum Pumpout Volun Flow: 14	ne (25% of Design Flow)	0.25	=	360)	Gallons (maximum d	lose)	8.4 ji	nches/dose
6	Coloct (te both Minimum and Max		- 1	80			L		littes/ dose
7	Calcula	te Doses Per Day = Design F	low X 70% ÷ Delivered Vol	ime	ļ	00		Gallons	Volume of	f Liquid in	I
ľ		1008 gpd ÷	80	gal =	I	8.8		Doses	Pi	ре	I
8	Calcula	te Drainback:	L		I			1	Pipe	Liquid	I
	Α.	Diameter of Supply Pipe =		Γ		2 ir	nches		Diameter	Per Foot	I
	В.	Length of Supply Pipe =		Γ	4	15 fe	eet		(inches)	(Gallons)	I
	С.	Volume of Liquid Per Line	al Foot of Pipe =	Г	0.1	170 G	allons/	/ft	1	0.045	I
	D.	Drainback = Length of Sup	ply Pipe X Volume of Liqu	لے wid Per Line	al Foot	of Pipe	u		1 25	0.078	I
		45 ft X	0.170 gal/ft	=	7	.7 G	allons		1.2.5	0.070	I
9.	Total De	osing Volume = Delivered Vo	olume plus Drainback						2	0.110	I
		80 gal +	7.7 gal =	88	5	Gallons			2	0.170	I
10	. Minimur	m Alarm Volume = Depth of	alarm (2 or 3 inches) X gal	llons per inc	ch of tar	nk • • • • •	allong		3	0.300	I
			42.7 Sal/ III	<u> </u>		0.0	ditoris		4	U.60 I	
	AR FLOA	AT SETTINGS*									
11	From Pi	20 Flow κατε : ump Curve - Must be Validat	od after installation:	40	<u> </u>						
B	. Calcula	ited GPM = Change in Depth	(in) x Gallons Per Inch / T	ime Interva	l in Min	utes			*	Note: This value	must
		in	X 42.9	gal/ir	n ÷			min =	GPM	installation base	d on
12	. Select F	Flow Rate from Line 11.A or	11.B above: 4	40.0	GPM*			л г <u> </u>		pump calibrati	on.
13	. Calcula	te TIMER ON setting:									
	Total D	osing Volume x GPM							Dual Alter	rnating	
		88 gal x	40.0 gr	pm =	2	.2 N	linutes	ON*	Pumps		
14	. Calcula	te TIMER OFF setting:	. <u></u>	-							
	Minutes	Per Day (1440)/Doses Per D	Day - Minutes On	·		1					Surge
	144	10 min ÷	doses/day -	2.2	2	min	=	161.1 Mi	nutes OFF*	622	Volume
15	. Pump O	iff Float - Measuring from bo	ottom of tank:	llons Por Inc	-h•			A la vez	Denth 355 in	021	621
		515 gal ÷	42.9	gal/in =		12.()	Inches	Depth 33.3 III	721	
16.	Alarm F	float - Measuring from botto	m of tank (90% recommen	ded):	l			Timer Or	i / Off 12.0 in	88	Gal
	Distanc	e to set Alarm Float = Tank	Depth X % of Tank Depth	1 (0.9 recom	nmendec	d)				515	Gal
	5	i3.0 in X	0.67	=	35	i.5 ir	ı	1009.05 gallons fr	om Off to HLA	,	x 2

Include Dual Alternating Pumps

Septic System Management Plan for Below Grade Systems

The goal of a septic system is to protect human health and the environment by properly treating wastewater before returning it to the environment. Your septic system is designed to kill harmful organisms and remove pollutants before the water is recycled back into our lakes, streams and groundwater.

This **management plan** will identify the operation and maintenance activities necessary to ensure longterm performance of your septic system. Some of these activities must be performed by you, the owner. Other tasks must be performed by a licensed septic maintainer or service provider. However, it is **<u>YOUR</u>** responsibility to make sure all tasks get accomplished in a timely manner.

The University of Minnesota's *Septic System Owner's Guide* contains additional tips and recommendations designed to extend the effective life of your system and save you money over time.

Proper septic system design, installation, operation and maintenance means safe and clean water!

Property Owner	Stillwater Area Public Schools - ISD 834	Email willgert@stillwaterschools.org
Property Address	11530 Hudson Blvd N, Lake Elmo, MN 55042	Property ID 36.029.21.43.0004
System Designer	Kloeppner Services & Designs, LLC	Contact Info 763-843-4114
System Installer		Contact Info
Service Provider/	Maintainer	Contact Info
Permitting Autho	$_{\rm rity}$ Washington County - Public Health & Environment	Contact Info 651-430-6655
Permit #		Date Inspected

Keep this Management Plan with your Septic System Owner's Guide. The Septic System Owner's Guide includes a folder to hold maintenance records including pumping, inspection and evaluation reports. Ask your septic professional to also:

- Attach permit information, designer drawings and as-built of your system, if they are available.
- Keep copies of all pumping records and other maintenance and repair invoices with this document.
- Review this document with your maintenance professional at each visit; discuss any changes in product use, activities, or water-use appliances.

For a copy of the *Septic System Owner's Guide*, visit <u>www.bookstores.umn.edu</u> and search for the word "septic" or call 800-322-8642.

For more information see http://septic.umn.edu

Version: August 2015

Septic System Management Plan for Below Grade Systems

Septic System Specifics						
System Type: I II II III IV* V* (Based on MN Rules Chapter 7080.2200 – 2400) *Additional Management Plan required	System is subject to operating permit* System uses UV disinfection unit* Type of advanced treatment unit					

Dwelling Type	Well Construction			
Bus Facility & Offices System capacity/ design flow (gpd): Anticipated average daily flow (gpd): Comments Business?: • Y N What type? School Bus Garage	Well depth (ft): > 50 Cased well Casing depth: > 50 Other (specify): Distance from septic (ft): > 50' Is the well on the design drawing?Y N			

	Septic Tank							
	First Tank volume: 2,500 gallons		Pump Tank 2,000 gallons					
	Number of Compartments: 1		Effluent Pump make/model: Installer Choice					
	Second Tank volume: 2,000 gallons		Pump capacity 25 GPM					
	Tank is constructed of <u>Concrete</u>		TDH <u>16</u> Feet of head					
	Effluent screen: \bigcirc Y \bigcirc N Alarm \bigcirc Y \bigcirc N		Alarm location					
	Soil Treatment	Ar	ea (STA)					
Тс	otal Soil Treatment Absorption Area: <u>1,200</u> sqft		Gravity					
Nı	umber of Zones: 2		distribution Pressure distribution					
М	(width x length) ea.: <u>10</u> ft x <u>60</u> ft		ports Cleanouts					
Location of additional STA:			Additional STA not available					
Ту	pe of distribution media: Rock	/	Surface water diversions					

Septic System Management Plan for Below Grade Systems

Owner Management Tasks

These operation and maintenance activities are your responsibility. Chart on page 6 can help track your activities.

Your toilet is not a garbage can. Do not flush anything besides human waste and toilet paper. No wet wipes, cigarette butts, disposal diapers, used medicine, feminine products or other trash!

The system and septic tanks needs to be checked every <u>12</u> months

Your service provider or pumper/maintainer should evaluate if your tank needs to be pumped more or less often.

Seasonally or several times per year

- Leaks. Check (listen, look) for leaks in toilets and dripping faucets. Repair leaks promptly.
- *Soil treatment area.* Regularly check for wet or spongy soil around your soil treatment area. If surfaced sewage or strong odors are not corrected by pumping the tank or fixing broken caps and leaks, call your service professional. *Untreated sewage may make humans and animals sick.* Keep bikes, snowmobiles and other traffic off and control borrowing animals.
- *Alarms*. Alarms signal when there is a problem; contact your service professional any time the alarm signals.
- *Lint filter*. If you have a lint filter, check for lint buildup and clean when necessary. If you do not have one, consider adding one after washing machine.
- *Effluent screen.* If you do not have one, consider having one installed the next time the tank is cleaned along with an alarm.

Annually

- *Water usage rate.* A water meter or another device can be used to monitor your average daily water use. Compare your water usage rate to the design flow of your system (listed on the next page). Contact your septic professional if your average daily flow over the course of a month exceeds 70% of the design flow for your system.
- *Caps*. Make sure that all caps and lids are intact and in place. Inspect for damaged caps at least every fall. Fix or replace damaged caps before winter to help prevent freezing issues.
- *Water conditioning devices.* See Page 5 for a list of devices. When possible, program the recharge frequency based on *water demand (gallons)* rather than *time (days)*. Recharging too frequently may negatively impact your septic system. Consider updating to demand operation if your system currently uses time,
- *Review your water usage rate.* Review the Water Use Appliance chart on Page 5. Discuss any major changes with your service provider or pumper/maintainer.

During each visit by a service provider or pumper/maintainer

- Make sure that your service professional services the tank through the manhole. (NOT though a 4" or 6" diameter inspection port.)
- Ask how full your tank was with sludge and scum to determine if your service interval is appropriate.
- Ask your pumper/maintainer to accomplish the tasks listed on the Professional Tasks on Page 4.

Septic System Management Plan for Below Grade Systems

Professional Management Tasks

These are the operation and maintenance activities that a pumper/maintainer performs to help ensure long-term performance of your system. At each visit a written report/record must be provided to owner.

Plumbing/Source of Wastewater

- Review the Water Use Appliance Chart on Page 5 with owner. Discuss any changes in water use and the impact those changes may have on the septic system.
- Review water usage rates (if available) with owner.

Septic Tank/Pump Tanks

- *Manhole lid.* A riser is recommended if the lid is not accessible from the ground surface. Insulate the riser cover for frost protection.
- *Liquid level*. Check to make sure the tank is not leaking. The liquid level should be level with the bottom of the outlet pipe. (If the water level is below the bottom of the outlet pipe, the tank may not be watertight. If the water level is higher than the bottom of the outlet pipe of the tank, the effluent screen may need cleaning, or there may be ponding in the soil treatment area.)
- Inspection pipes. Replace damaged or missing pipes and caps.
- *Baffles*. Check to make sure they are in place and attached, and that inlet/outlet baffles are clear of buildup or obstructions.
- *Effluent screen.* Check to make sure it is in place; clean per manufacturer recommendation. Recommend retrofitted installation if one is not present.
- *Alarm*. Verify that the alarm works.
- *Scum and sludge*. Measure scum and sludge in each compartment of each septic and pump tank, pump if needed.

Pump

- *Pump and controls.* Check to make sure the pump and controls are operating correctly.
- *Pump vault.* Check to make sure it is in place; clean per manufacturer recommendations.
- *Alarm*. Verify that the alarm works.
- Drainback. Check to make sure it is draining properly.
- Event counter or elapsed time meter. Check to see if there is an event counter or elapsed time meter for the pump. If there is one or both, calculate the water usage rate and compare to the anticipated use listed on Design and Page 2. Dose Volume: <u>80</u> gallons: Pump run time: <u>3.25</u> Minutes

Soil Treatment Area

- *Inspection pipes*. Check to make sure they are properly capped. Replace caps and pipes that are damaged.
- *Surfacing of effluent*. Check for surfacing effluent or other signs of problems.
- *Lateral flushing*. Check lateral distribution; if cleanouts exist, flush and clean at recommended frequency.
- *Vegetation* Check to see that a good growth of vegetation is covering the system.

All other components – evaluate as listed here:

Septic System Management Plan for Below Grade Systems

Water-Use Appliances and Equipment in the Building

Appliance	Impacts on System	Management Tips
Garbage disposal	 Uses additional water. Adds solids to the tank. Finely-ground solids may not settle. Unsettled solids can exit the tank and enter the soil treatment area. 	 Use of a garbage disposal is not recommended. Minimize garbage disposal use. Compost instead. To prevent solids from exiting the tank, have your tank pumped more frequently. Add an effluent screen to your tank.
Washing machine	 Washing several loads on one day uses a lot of water and may overload your system. Overloading your system may prevent solids from settling out in the tank. Unsettled solids can exit the tank and enter the soil treatment area. 	 Choose a front-loader or water-saving top-loader, these units use less water than older models. Limit the addition of extra solids to your tank by using liquid or easily biodegradable detergents. Limit use of bleach-based detergents and fabric softeners. Install a lint filter after the washer and an effluent screen to your tank Wash only full loads and think even – spread your laundry loads throughout the week.
Dishwasher	 Powdered and/or high-phosphorus detergents can negatively impact the performance of your tank and soil treatment area. New models promote "no scraping". They have a garbage disposal inside. 	 Use gel detergents. Powdered detergents may add solids to the tank. Use detergents that are low or no-phosphorus. Wash only full loads. Scrape your dishes anyways to keep undigested solids out of your septic system.
Grinder pump (in building)	• Finely-ground solids may not settle. Unsettled solids can exit the tank and enter the soil treatment area.	 Expand septic tank capacity by a factor of 1.5. Include pump monitoring in your maintenance schedule to ensure that it is working properly. Add an effluent screen.
Large bathtub (whirlpool)	 Large volume of water may overload your system. Heavy use of bath oils and soaps can impact biological activity in your tank and soil treatment area. 	 Avoid using other water-use appliances at the same time. For example, don't wash clothes and take a bath at the same time. Use oils, soaps, and cleaners in the bath or shower sparingly.
Clean Water Uses	Impacts on System	Management Tips
High-efficiency furnace	• Drip may result in frozen pipes during cold weather.	• Re-route water directly out of the house. Do not route furnace discharge to your septic system.
Water softener Iron filter Reverse osmosis	Salt in recharge water may affect system performance.Recharge water may hydraulically overload the system.	 These sources produce water that is not sewage and should not go into your septic system. Reroute water from these sources to another outlet, such as a dry well, draintile or old drainfield.
Surface drainage Footing drains	• Water from these sources will overload the system and is prohibited from entering septic system.	 When replacing, consider using a demand-based recharge vs. a time-based recharge. Check valves to ensure proper operation; have unit serviced per manufacturer directions

Septic System Management Plan for Below Grade Systems

Owner Maintenance Log

Track maintenance activities here for easy reference. See list of management tasks on pages 3 and 4.

Activity		Date accomplished								
Check frequently:										
Leaks: check for plumbing leaks*										
Soil treatment area check for surfacing**										
Lint filter: check, clean if needed*										
Effluent screen (if owner-maintained)***										
Alarm**										
Check annually:										
Water usage rate (maximum gpd)										
Caps: inspect, replace if needed										
Water use appliances – review use										
Other:										

*Monthly

**Quarterly

***Bi-Annually

Notes:

"As the owner of this SSTS, I understand it is my responsibility to properly operate and maintain the sewage treatment system on this property, utilizing the Management Plan. If requirements in this Management Plan are not met, I will promptly notify the permitting authority and take necessary corrective actions. If I have a new system, I agree to adequately protect the reserve area for future use as a soil treatment system."

<u>Anthony V. Willger</u> Property Owner Signature: Anthony V. Willger (Apr 8, 2020)	Apr 8, 2020	SIGN HERE					
Management Plan Prepared By: Jesse Kloeppner	Certification # C	28188					
Permitting Authority: Washington County - Public Health & Environment							

©2015 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer. This material is available in alternative formats upon request. Contact the Water Resources Center, 612-624-9282. The Onsite Sewage Treatment Program is delivered by the University of Minnesota Extension Service and the University of Minnesota Water Resources Center.

APPENDIX

11530 Hudson Blvd N, Lake Elmo

Acres	11	State	MN
Square Footage	479332	Plat Name	FOUR CORNERS
Parcel ID	3602921430004	Block	1
Owner Name	ISD 834 STILLWATER	Lot	1
Owner More	NULL	Multi Uses	Ν
Owner Address	1875 GREELEY ST S	Homestead	Ν
PO Box		Dwell Type	
City, State, Zip	STILLWATER MN 55082	Home Style	
Estimated Land Value	\$958,400	Finished SqFt	
Estimated Building Value	\$739,000	Garage	
Estimated Total Value	\$1,697,400	Garage SqFt	
Sale Date	10/23/2018	Basement	
Sale Value	\$5,000,000	Heating	
School District	ISD834	Cooling	
Watershed District	WS VALLEY BRANCH	Year Built	
Class Code 1	901 Schools-Public	Number of Units	0
Class Code 2		Green Acre	Ν
Class Code 3		Open Space	Ν
Class Code 4		Ag Preserve	Ν
City	CITY OF LAKE ELMO	TAXPIN	36.029.21.43.0004
City USPS	LAKE ELMO	SITUS_ADDRESS	11530 HUDSON BLVD N, CITY OF LAKE ELMO
ZIP	55042	TAXDESCRIPTION	Block 1 Lot 1 SubdivisionCd 3198 SubdivisionName FOUR CORNERS
ZIP4	NULL		

Disclaimer: Map and parcel data are believed to be accurate, but accuracy is not guaranteed. This is not a legal document and should not be substituted for a title search, appraisal, survey, or for zoning 1 verification.

Map Scale **1 inch = 167 feet** 10/21/2019

P:\Projects\Projects - 2017\12176010 - Stillwater Bus Facility Evals\C. Design\Drawing Files\12176010 - C1.dwg

SYMBOL LEGEND

REMOVE AND DISPOSE OF EXISTING BITUMINOUS PAVEMENT SECTION

REMOVE AND DISPOSE OF EXISTING CONCRETE PAVEMENT SECTION

REMOVE AND SALVAGE EXISTING GRAVEL SECTION FOR REUSE. DISPOSE OF ALL EXCESS MATERIALS.

KEY NOTES

- 1 REMOVE AND DISPOSE OF EXISTING CONCRETE CURB AND GUTTER.
- (2) REMOVE AND DISPOSE OF EXISTING CHAIN LINK FENCE FABRIC, POSTS, AND FOOTINGS.
- (3) REMOVE AND DISPOSE OF EXISTING CONCRETE PAVEMENT SECTION.
- (4) SAWCUT, REMOVE, AND DISPOSE OF EXISTING BITUMINOUS PAVEMENT SECTION.
- 5 REMOVE AND DISPOSE OF EXISTING STORM SEWER.
- 6 REMOVE AND DISPOSE EXISTING CONCRETE BOLLARDS.
- PROTECT EXISTING ELECTRICAL TRANSFORMER DURING CONSTRUCTION.
- PROTECT WELL DURING CONSTRUCTION UNTIL NEW WATER
 SERVICE CONNECTION IS INSTALLED AND OPERATIONAL. WELL
 TO BE ABANDONED AFTER WATER SERVICE INSTALLATION.
- PROTECT EXISTING SEPTIC SYSTEM TANKS AND DRAINFIELD DURING CONSTRUCTION. ABANDON AND DISPOSE OF ALL
 COMPONENTS AND ASSOCIATED SOILS PER WASHINGTON COUNTY REQUIREMENTS, AFTER SANITARY SERVICE CONNECTION IS OPERATIONAL.
- (1) REMOVE AND DISPOSE EXISTING TREES, STUMPS AND ROOTS.
- 11 TREES TO BE REMOVED BY CONTRACTOR FOR FOUR CORNERS STREET & UTILITIES IMPROVEMENTS.
- 12 PROTECT EXISTING BOULDER RETAINING WALL DURING CONSTRUCTION.

DEMOLITION NOTES

1. Verify all existing utility locations.

- 2. It is the responsibility of the Contractor to perform or coordinate all necessary utility demolitions and relocations from existing utility locations to all onsite amenities and buildings. These connections include, but are not limited to, water, sanitary sewer, cable tv, telephone, gas, electric, site lighting, etc.
- 3. Prior to beginning work, contact Gopher State Onecall (651-454-0002) to locate utilities throughout the area under construction. The Contractor shall retain the services of a private utility locator to locate the private utilities.
- 4. Sawcut along edges of pavements, sidewalks, and curbs to remain.
- All construction shall be performed in accordance with state and local standard specifications for construction.
- Coordinate with Four Corners Plans for any work outside of the property within the road Right-Of-Way.
- 7. Protect all trees that are to remain during all construction.

LOT SIZE

Total Lot Size: 478,997 s.f. = 11.00 Acres

Breakdown:

Existing Building: 15,498 s.f. = 3.23% Existing Gravel Surfaced Pavement Areas: 91,861 s.f. = 19.18% Existing Concrete and Bituminous Pavement: 9,022 s.f. = 1.88% Existing Open Space: 362,616 s.f. = 75.71%

 Larson Bagineering, Inc. 3524 Labore Road White Bear Lake, MN 55110 651.481.9120 (f) 651.481.9201 www.larsonengr.com
CIENT: CI
Project Title: 2019 STILLWATER BUS FACILITY IMPROVEMENTS STILWATER AREA PUBLIC SCHOOLS STILLWATER, MN 55082
I hereby certify that this plan, specifications or report was prepared by me or under my direct supervision and that I am a duly licensed Professional Engineer under the laws of the state of Minnesota. Market Market Greg A. Buchal, P.E. Date: 04.30.18 Reg. No.: 23793
Rev. Date Description 1 06.06.18 Watershed Comments 2 09.14.18 City Resubmittal 3 10.12.18 City Resubmittal 4 11.06.18 City Resubmittal 5 12.07.18 City Resubmittal 5 12.07.18 City Resubmittal 1 5 6 12.07 1 12.07.18 City Resubmittal 1 5 6 1 10.12.18 04.30.18 1 5 0 1 1 1 1 1

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Washington County, Minnesota

11530 Hudson Blvd N, Lake Elmo

44° 57' 1" N

44° 56' 56" N

92° 52'22" W

	MAP L	EGEND		MAP INFORMATION
Area of Int	erest (AOI)	100	Spoil Area	The soil surveys that comprise your AOI were mapped at
	Area of Interest (AOI)	۵	Stony Spot	1:15,800.
Soils		0	Very Stony Spot	Warning: Soil Map may not be valid at this scale
	Soli Map Unit Polygons	Ŷ	Wet Spot	
~	Soil Map Unit Lines	Å	Other	Enlargement of maps beyond the scale of mapping can cause
	Soil Map Unit Points		Special Line Features	line placement. The maps do not show the small areas of
Special I	Point Features	Water Fea	tures	contrasting soils that could have been shown at a more detailed
<u>ہ</u>	Blowout	\sim	Streams and Canals	Sourc.
	Borrow Pit	Transport	ation	Please rely on the bar scale on each map sheet for map
ж	Clay Spot	+++	Rails	measurements.
\diamond	Closed Depression	~	Interstate Highways	Source of Map: Natural Resources Conservation Service
X	Gravel Pit	~	US Routes	Web Soil Survey URL:
00	Gravelly Spot	\sim	Major Roads	Coordinate System: Web Mercator (EPSG:3857)
0	Landfill	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
٨.	Lava Flow	Backgrou	nd	projection, which preserves direction and shape but distorts
علله	Marsh or swamp	and the second second	Aerial Photography	Albers equal-area conic projection that preserves area, such as the
R	Mine or Quarry			accurate calculations of distance or area are required.
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as
0	Perennial Water			of the version date(s) listed below.
~	Rock Outcrop			Soil Survey Area: Washington County Minnesota
+	Saline Spot			Survey Area Data: Version 15, Sep 16, 2019
°°.	Sandy Spot			Soil man units are labeled (as snace allows) for man scales
-	Severely Eroded Spot			1:50,000 or larger.
~	Sinkhole			Data(a) aprial images were photographed. Jul 1 2012 Sep 12
2	Slide or Slip			2016 2016
» A	Sodic Spot			
Der la construcción de l				I ne orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
49	Antigo silt loam, 0 to 2 percent slopes	2.0	78.4%
367B	Crystal Lake silt loam, 1 to 6 percent slopes	0.6	21.6%
Totals for Area of Interest	•	2.6	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

Washington County, Minnesota

49—Antigo silt loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2tnz7 Elevation: 690 to 1,900 feet Mean annual precipitation: 27 to 36 inches Mean annual air temperature: 37 to 46 degrees F Frost-free period: 80 to 150 days Farmland classification: All areas are prime farmland

Map Unit Composition

Antigo and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Antigo

Setting

Landform: Flats, terraces Landform position (three-dimensional): Tread, rise Down-slope shape: Convex, linear Across-slope shape: Convex, linear Parent material: Loess and/or silty glaciofluvial deposits over loamy glaciofluvial deposits over stratified sandy and gravelly outwash

Typical profile

Ap - 0 to 9 inches: silt loamE - 9 to 12 inches: silt loamB/E - 12 to 19 inches: silt loamBt1 - 19 to 28 inches: silt loam2Bt2 - 28 to 31 inches: loam2Bt3 - 31 to 33 inches: very gravelly sandy loam3C - 33 to 79 inches: stratified sand to very gravelly coarse sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Moderate (about 7.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: B Forage suitability group: Mod AWC, adequately drained (G090BY005WI) *Other vegetative classification:* Acer saccharum/Hydrophyllum (AH), Acer saccharum/Viola-Osmorhiza (AViO) *Hydric soil rating:* No

Minor Components

Billyboy

Percent of map unit: 8 percent Landform: Terraces, flats Landform position (three-dimensional): Tread, rise Down-slope shape: Linear Across-slope shape: Linear Other vegetative classification: Acer saccharum/Hydrophyllum (AH), Acer saccharum/Viola-Osmorhiza (AViO), Acer saccharum-Tsuga/Maianthemum (ATM), Acer saccharum/Caulophyllum-Circaea (ACaCi) Hydric soil rating: No

Sconsin

Percent of map unit: 5 percent
Landform: Flats, terraces
Landform position (three-dimensional): Tread, rise
Down-slope shape: Linear
Across-slope shape: Linear
Other vegetative classification: Acer saccharum/Hydrophyllum (AH), Acer saccharum/Viola-Osmorhiza (AViO), Acer saccharum-Tsuga/Maianthemum (ATM), Acer saccharum/Caulophyllum-Circaea (ACaCi)
Hydric soil rating: No

Rosholt

Percent of map unit: 3 percent Landform: Flats, terraces Landform position (three-dimensional): Tread, rise Down-slope shape: Convex, linear Across-slope shape: Convex, linear Other vegetative classification: Acer saccharum/Athyrium (AAt), Acer saccharum/ Caulophyllum-Circaea (ACaCi), Acer saccharum/Vaccinium-Desmodium (AVDe), Acer saccharum-Quercus/Viburnum=(Vaccinium) (AQVb-V) Hydric soil rating: No

Brill

Percent of map unit: 2 percent Landform: Terraces, flats Landform position (three-dimensional): Tread, rise Down-slope shape: Linear Across-slope shape: Linear Other vegetative classification: Acer saccharum/Athyrium (AAt), Acer saccharum/ Caulophyllum-Circaea (ACaCi) Hydric soil rating: No

Ossmer

Percent of map unit: 2 percent Landform: Flats, terraces Landform position (three-dimensional): Tread, talf Down-slope shape: Linear, concave Across-slope shape: Linear

Custom Soil Resource Report

Septic Tank Absorption Fields (MN)–Washington County, Minnesota									
Map symbol and soil name	Pct. of map unit	Septic Tank Absorption Fields - At-Grade		Septic Tank Absorptic - Mound	on Fields	Septic Tank Absorption Fields - Trench			
		Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value		
49—Antigo silt loam, 0 to 2 percent slopes									
Antigo	80	Very limited		Not limited		Very limited			
		>= 35% Rock Frags	0.90			>= 35% Rock Frags	0.90		
						Excessive percolation	0.11		
367B—Crystal Lake silt loam, 1 to 6 percent slopes									
Crystal lake	85	Very limited		Slightly limited		Extremely limited			
		Soil saturation	0.82	Slope	0.15	Soil saturation	1.00		
						Restricted percolation	0.23		

Minnesota Department of Health

Minnesota Well Index

Version 2.0.62, 07/15/19 1:39PM

